Yves Konigshofer's

Thesis

March 18, 2005

STUDIES OF GAMMA DELTA T CELL ACTIVATION: FROM THE INTESTINE TO THE SPLEEN AND ALSO IN SILICON

A DISSERTATION

SUBMITTED TO THE PROGRAM IN IMMUNOLOGY

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Yves Konigshofer

March 2005

© Copyright by Yves Konigshofer 2005

All Rights Reserved

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Yueh-hsiu Chien Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Eugene C. Butcher

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark M. Davis

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Patricia P. Jones

Approved for the University Committee on Graduate Studies

Abstract

The roles of gamma delta T cells in the immune system have remained unclear. In the spleens and lymph nodes of adult animals, only about 5% of lymphocytes are gamma delta T cells. On the other hand, about half of the approximately 10 million lymphocytes in the murine intraepithelial lymphocyte (IEL) compartment of the small intestine are gamma delta T cells. A microarray analysis of gamma delta IELs from normal mice and from mice infected with the enteric pathogen Yersinia pseudotuberculosis was performed to analyze how these cells respond to infection and revealed that their mRNA transcripts do not show major changes following infection and that gamma delta IELs appear to be constitutively activated. To further study gamma delta T cells, RAG2-deficient BALB/c mice that were transgenic for the G8 gamma delta T cell receptor (TCR) were used. G8 gamma delta T cells can be activated through the recognition of the MHC class Ib molecules T10 and T22 of the b but not of the d haplotype. Microarray studies of G8 gamma delta IELs reveal that they are also constitutively activated – even in the apparent absence of a stimulatory TCR ligand. In addition, while the exposure of G8 gamma delta IELs to ligand-expressing splenocytes leads to their expression of CD69 and blasting, this only leads to minor changes to their transcripts. On the other hand, the coculture of splenic gamma delta T cells from these mice with stimulatory TCR ligand-expressing splenocytes leads to their activation and their expression of cell-surface molecules like CD5, CD6, CD44, CD69, Lag-3, and PD-1. Furthermore, activated splenic gamma delta T cells are found to produce interferon gamma and interleukin 4 that act synergistically to activate B cells. In fact, the presence of both of these cytokines leads to the expression of CD69 by about 80 - 90% of B cells and their upregulation of B7.2, MHC class II, and T10/T22. Finally, in order to study gamma delta T cell activation and immunological synapse formation, a simulation of cell-to-cell contact was designed using the JAVA programming language.

Acknowledgements

First and foremost, I would like to thank my parents, Ilse and Friedrich, and my sister, Marilyn, for being so supportive during my many years at Stanford.

I would like to thank my adviser, Chien. She was about as hands-on as advisers can get. This was very helpful during my first few years at Stanford because I learned a lot about how to design and critically evaluate experiments. There are advisers who appear as if they could not care less about their graduate students. Chien is definitely not one of those advisers.

I would like to thank all of the members, past and present, of the Chien and Davis labs. All of them were nice and helpful, both inside and outside of the labs. Mark and Chien did a great job of putting together labs where someone almost always knew how to answer some difficult problem or how to perform certain types of experiments. Of past Chien and Davis lab members, I would especially like to thank Rudy Chaparro, Ashley Chi, Aude Fahrer, Corwyn Hopke, Kirk Jensen, Sunny Shin, and Tony Yao for being good friends.

I would like to thank the ASSU Nominations Commission for allowing me to serve on the Administrative Panels on Biosafety, on Human Subjects in Medical Research, and on Laboratory Animal Care over a five year span. This allowed me to learn the rules and regulations that apply to medical research and taught me a lot about different areas of medical research.

I would like to thank my past coworkers in intramural sports for their support on the field. I think that every graduate student should spend at least one quarter refereeing a sport before TA-ing his or her first class. Students sometimes complain, and what they say to referees (which might not always be in accordance with the Fundamental Standard) is often a lot worse than what they would dare say to TAs. However, as a referee, as a TA, and as a scientist, you have to be able to back up your positions and defend your decisions in order to be effective.

I would like to thank all of my teammates in intramural sports (there were a lot) and, especially, those I had the privilege to captain. It was almost always fun and I learned a lot from it. We even won a championship in co-ed softball. Finally, during my sophomore year at McGill University, I was forced to take a course in physical chemistry for bioscience students. In the first class, the professor teaching that course, Adi Eisenberg, mentioned that it was not possible to teach this course using examples that were relevant to us and, for the next few months, we had to memorize one complicated equation after another. However, some of these equations did become relevant during my graduate school years. In fact, I am pretty sure that the course could have been taught using interesting examples from the biosciences. Chapter 5 of this thesis is dedicated to all the bioscience students who had to endure this physical chemistry class.

Table of Contents

General In	troduction	1
Chapter 1:	Attributes of $\gamma\delta$ Intraepithelial Lymphocytes as Suggested	
by Their T	ranscriptional Profile	5
	Foreword	5
Abstract		6
Introductio	n	7
Methods		9
	Sample Preparation	9
	GeneChip Data Analysis	9
Results		11
	Gene Expression Correlates Well with Known Protein Expression and	
	Cell Function	11
	Effector Function Genes Are Constitutively Expressed in $\gamma\delta$ IELs but	
	Induced in MLN CD8 ⁺ $\alpha\beta$ T Cells	11
	$\gamma\delta$ IELs May Be Activated Through Signaling Pathways Distinct from	
	Those in $\alpha\beta$ T Cells	13
	$\gamma \delta$ IEL Function	13
	$\gamma\delta$ IELs Have the Potential to Kill a Variety of Targets by Using Difference	nt
	Mechanisms	14
	γδ IELs Can Recruit Other Leukocytes, Down-Regulate Immune	
	Responses, and Present Antigens on Class II MHC	14
	$\gamma\delta$ IELs May Contribute to Intestinal Lipid Metabolism, Cholesterol	
	Homeostasis, and Physiology	16
Discussion		18
Figure Leg	ends	21
	ends	
Acknowled	lgements	25
Chapter 2:	Antigen-Specific γδ Intraepithelial Lymphocyte Responses	36

muoduci	ion	37
Materials	and Methods	39
	Mice	39
	Screening for G8 Transgenic Mice	39
	Isolation of $\gamma\delta$ IELs and Splenocytes	39
	In Vitro $\gamma\delta$ T cell Activation and RNA Isolation	40
Results a	nd Discussion	42
	The Activation of $\gamma\delta$ IELs	42
	The Activation of IELs through Their TCRs has Little Effect on The	ir
	Transcripts	43
	Autoreactive IELs May Be Disarmed	45
	Conclusion	46
Figure L	egends	47
Table Le	gends	48
-	onses Using Mice that are Transgenic for the G8 $\gamma\delta$ TCR at the DAC2	
are Defic	ient in RAG2	55
are Defic Introduct	ient in RAG2	55 56
are Defic Introduct	ient in RAG2	55 56 57
are Defic Introduct	ient in RAG2 ion s and Methods <i>T10/T22 Expression Analysis</i>	55 56 57 57
are Defic Introduct	ient in RAG2 ion s and Methods <i>T10/T22 Expression Analysis</i> <i>Histology</i>	55 56 57 57 57
are Defic Introduct	ient in RAG2 ion s and Methods <i>T10/T22 Expression Analysis</i> <i>Histology</i> <i>Microarray Analysis Using Two Rounds Of In Vitro Transcription (</i>	55 56 57 57 57 (IVT)58
are Defic Introduct	ient in RAG2 ion and Methods <i>T10/T22 Expression Analysis</i> <i>Histology</i> <i>Microarray Analysis Using Two Rounds Of In Vitro Transcription (</i> <i>Microarray Analysis Using PCR-Based Amplification</i>	55 56 57 57 57 IVT)58 58
are Defic Introduct Materials	ient in RAG2 ion ion s and Methods <i>T10/T22 Expression Analysis</i> <i>Histology</i> <i>Microarray Analysis Using Two Rounds Of In Vitro Transcription (</i> <i>Microarray Analysis Using PCR-Based Amplification</i> <i>G8 RAG2^{KO} BALB/c γδ T cell Activation for Microarray Analysis</i>	55 56 57 57 57 IVT)58 58 60
are Defic Introduct Materials	ient in RAG2 ion	55 56 57 57 57 IVT)58 58 60 61
are Defic Introduct Materials	ient in RAG2 ion	55 56 57 57 57 58 60 61 61
are Defic Introduct Materials	ient in RAG2 ion ion Methods T10/T22 Expression Analysis Histology Microarray Analysis Using Two Rounds Of In Vitro Transcription (Microarray Analysis Using PCR-Based Amplification $G8$ RAG2 ^{KO} BALB/c $\gamma\delta$ T cell Activation for Microarray Analysis nd Discussion T10/T22 Expression is Cell Type and Strain Dependent Histological Analysis of G8 BALB/c Mice	55 56 57 57 57 IVT)58 58 60 61 61
are Defic Introduct Materials	ient in RAG2 ion	55 56 57 57 57 IVT)58 60 61 61 αβΤ

G8 γδ T cell Activation Using Splenocytes of Other Strains 65 Identifying Novel Responses to Activation Using Microarrays 66 γδ T cell Activation Leads to Changes in TCR-Associated Transcripts 68 γδ T cell Activation Leads to Changes in the NF-κB-Associated Transcripts Transcripts 69 γδ T cell Activation Leads to the Expression of Transcripts that are Associated with Effector Functions Associated with Effector Functions 70 γδ T cell Activation Leads to Changes in Cytokine-Related Transcripts 71 γδ T cell Activation Leads to Changes in Cytokine-Related Transcripts 74 γδ T cell Activation Leads to Changes in Cell Proliferation- and Apoptosis-Related Transcripts Λγδ T cell Activation Leads to Changes in the Wnt Signaling Pathway 76 γδ T cell Activation Reduces the Expression of Krüppel-like Factors 77 γδ T cell Activation Reduces the Expression of Some Cell-Surface Molecules Molecules 78 γδ T cell Activation Leads to Changes in Metabolism-Associated Transcripts 81 Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic	Splenic $\gamma\delta T$ cells Activate in Response to T10/T22 ^b -Expressing Cells 64
γδ T cell Activation Leads to Changes in TCR-Associated Transcripts	G8 $\gamma\delta$ T cell Activation Using Splenocytes of Other Strains
γδ T cell Activation Leads to Changes in the NF-κB-Associated Transcripts 69 γδ T cell Activation Leads to the Expression of Transcripts that are Associated with Effector Functions 70 γδ T cell Activation Leads to Changes in Cytokine-Related Transcripts .71 γδ T cell Activation Leads to Increased Amounts of Transcripts Associated with Protein Synthesis 74 γδ T cell Activation Leads to Changes in Cell Proliferation- and Apoptosis-Related Transcripts 75 γδ T cell Activation Leads to Changes in the Wnt Signaling Pathway 76 γδ T cell Activation Reduces the Expression of Kriippel-like Factors 77 γδ T cell Activation Induces the Expression of Some Cell-Surface 78 γδ T cell Activation Reduces the Levels of CD1d Transcripts 80 γδ T cell Activation Leads to Changes in Metabolism-Associated 77 γδ T cell Activation Leads to Changes in Metabolism-Associated 78 γδ T cell Activation Leads to Changes in Metabolism-Associated 78 γδ T cell Activation Leads to Changes in Metabolism-Associated 77 γδ T cell Activation Leads to The Activation of B Cells 81 Activation Leads to the Activation of Splenic γδ T cells Leads to 83 Figure Legends 87	Identifying Novel Responses to Activation Using Microarrays
Transcripts 69 γδ T cell Activation Leads to the Expression of Transcripts that are Associated with Effector Functions 70 γδ T cell Activation Leads to Changes in Cytokine-Related Transcripts .71 γδ T cell Activation Leads to Increased Amounts of Transcripts Associated with Protein Synthesis 74 γδ T cell Activation Leads to Changes in Cell Proliferation- and Apoptosis-Related Transcripts 75 γδ T cell Activation Reduces the Expression of Krüppel-like Factors 77 γδ T cell Activation Induces the Expression of Some Cell-Surface Molecules Molecules 78 γδ T cell Activation Leads to Changes in Metabolism-Associated 78 γδ T cell Activation Reduces the Levels of CD1d Transcripts 80 γδ T cell Activation Leads to Changes in Metabolism-Associated 78 γδ T cell Activation Leads to Changes in Metabolism-Associated 78 γδ T cell Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods <t< td=""><td>$\gamma\delta$ T cell Activation Leads to Changes in TCR-Associated Transcripts 68</td></t<>	$\gamma\delta$ T cell Activation Leads to Changes in TCR-Associated Transcripts 68
γδ T cell Activation Leads to the Expression of Transcripts that are Associated with Effector Functions 70 γδ T cell Activation Leads to Changes in Cytokine-Related Transcripts .71 γδ T cell Activation Leads to Increased Amounts of Transcripts Associated with Protein Synthesis. 74 γδ T cell Activation Leads to Changes in Cell Proliferation- and Apoptosis-Related Transcripts. 75 γδ T cell Activation Leads to Changes in the Wnt Signaling Pathway. 76 γδ T cell Activation Reduces the Expression of Krüppel-like Factors	$\gamma\delta$ T cell Activation Leads to Changes in the NF- κ B-Associated
Associated with Effector Functions 70 $\gamma\delta$ T cell Activation Leads to Changes in Cytokine-Related Transcripts . 71 $\gamma\delta$ T cell Activation Leads to Increased Amounts of Transcripts Associated 74 $\gamma\delta$ T cell Activation Leads to Changes in Cell Proliferation- and 75 $Apoptosis$ -Related Transcripts. 75 $\gamma\delta$ T cell Activation Leads to Changes in the Wnt Signaling Pathway 76 $\gamma\delta$ T cell Activation Reduces the Expression of Krüppel-like Factors. 77 $\gamma\delta$ T cell Activation Induces the Expression of Some Cell-Surface 80 $Nolecules$ 78 $\gamma\delta$ T cell Activation Reduces the Levels of CD1d Transcripts. 80 $\gamma\delta$ T cell Activation Leads to Changes in Metabolism-Associated 81 Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic $\gamma\delta$ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	Transcripts
γδ T cell Activation Leads to Changes in Cytokine-Related Transcripts . 71 γδ T cell Activation Leads to Increased Amounts of Transcripts Associated with Protein Synthesis 74 γδ T cell Activation Leads to Changes in Cell Proliferation- and 74 Apoptosis-Related Transcripts 75 γδ T cell Activation Leads to Changes in the Wnt Signaling Pathway 76 γδ T cell Activation Reduces the Expression of Krüppel-like Factors 77 γδ T cell Activation Induces the Expression of Some Cell-Surface 78 Molecules 78 γδ T cell Activation Leads to Changes in Metabolism-Associated 78 γδ T cell Activation Leads to Changes in Metabolism-Associated 81 γδ T cell Activation Leads to Changes in Metabolism-Associated 81 γδ T cell Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to 104 Introduction 105 Materials and Methods 108	$\gamma\delta$ T cell Activation Leads to the Expression of Transcripts that are
$\gamma \delta T \ cell \ Activation \ Leads \ to \ Increased \ Amounts \ of \ Transcripts \ Associated \ with \ Protein \ Synthesis$	Associated with Effector Functions
with Protein Synthesis 74 $\gamma \delta$ T cell Activation Leads to Changes in Cell Proliferation- and Apoptosis-Related Transcripts 75 $\gamma \delta$ T cell Activation Leads to Changes in the Wnt Signaling Pathway 76 $\gamma \delta$ T cell Activation Reduces the Expression of Krüppel-like Factors 77 $\gamma \delta$ T cell Activation Induces the Expression of Some Cell-Surface 78 $Molecules$ 78 $\gamma \delta$ T cell Activation Reduces the Levels of CD1d Transcripts 80 $\gamma \delta$ T cell Activation Leads to Changes in Metabolism-Associated 77 Transcripts 81 Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 87 Chapter 4: Antigen-specific Activation of Splenic $\gamma \delta$ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	$\gamma\delta$ T cell Activation Leads to Changes in Cytokine-Related Transcripts . 71
γδ T cell Activation Leads to Changes in Cell Proliferation- and Apoptosis-Related Transcripts	$\gamma\delta$ T cell Activation Leads to Increased Amounts of Transcripts Associated
Apoptosis-Related Transcripts 75 γδ T cell Activation Leads to Changes in the Wnt Signaling Pathway 76 γδ T cell Activation Reduces the Expression of Krüppel-like Factors 77 γδ T cell Activation Induces the Expression of Some Cell-Surface 78 Molecules 78 γδ T cell Activation Reduces the Levels of CD1d Transcripts 80 γδ T cell Activation Leads to Changes in Metabolism-Associated 77 Transcripts 81 Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to 104 Introduction 105 Materials and Methods 108	with Protein Synthesis74
γδ T cell Activation Leads to Changes in the Wnt Signaling Pathway	$\gamma\delta$ T cell Activation Leads to Changes in Cell Proliferation- and
γδ T cell Activation Reduces the Expression of Krüppel-like Factors	Apoptosis-Related Transcripts
γδ T cell Activation Induces the Expression of Some Cell-Surface Molecules 78 γδ T cell Activation Reduces the Levels of CD1d Transcripts 80 γδ T cell Activation Leads to Changes in Metabolism-Associated 81 Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to 104 Introduction 105 Materials and Methods 108	$\gamma\delta$ T cell Activation Leads to Changes in the Wnt Signaling Pathway 76
Molecules 78 γδ T cell Activation Reduces the Levels of CD1d Transcripts 80 γδ T cell Activation Leads to Changes in Metabolism-Associated 81 Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to 104 Introduction 105 Materials and Methods 108	$\gamma\delta$ T cell Activation Reduces the Expression of Krüppel-like Factors 77
γδ T cell Activation Reduces the Levels of CD1d Transcripts	$\gamma\delta$ T cell Activation Induces the Expression of Some Cell-Surface
γδ T cell Activation Leads to Changes in Metabolism-Associated Transcripts 81 Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	Molecules
Transcripts 81 Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	$\gamma\delta$ T cell Activation Reduces the Levels of CD1d Transcripts
Activation Leads to the Activation of B Cells 82 Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	$\gamma\delta$ T cell Activation Leads to Changes in Metabolism-Associated
Conclusions 83 Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	Transcripts
Figure Legends 84 Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	Activation Leads to the Activation of B Cells
Table Legends 87 Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	Conclusions
Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to Broad Activation of B cells Introduction 105 Materials and Methods	Figure Legends
Broad Activation of B cells 104 Introduction 105 Materials and Methods 108	Table Legends
Introduction	Chapter 4: Antigen-specific Activation of Splenic γδ T cells Leads to
Materials and Methods108	Broad Activation of B cells 104
	Introduction
Mice	Materials and Methods108
	Mice
G8 γδ T cell Activation108	G8 γδ T cell Activation108

	Cytokines and ELISA Analyses	
	Flow Cytometry	109
	RT-PCR	110
Results		111
	A T10/T22-Specific γδ T cell Activation System	111
	$\gamma\delta$ T cell Activation Leads to B cell Activation Through Solub	le Factors
	The Expression of B7.2 is Upregulated on Splenic B cells in t	he Coculture
		114
	The Expression of T10/T22 is Upregulated on Splenic Cells in	n the
	Coculture	114
	Activated $\gamma\delta$ T cells Produce IFN γ and IL-4	115
Discussio	on	117
Figure L	egends	120
Chapter	5: A Simulation of Cell-to-Cell Contact in Order to S	Study
Synapse 1	Formation and T cell Activation	128
	Foreword	128
Introduct	tion	129
Material	s and Methods	
	On the use of JAVA	
	The Simulation, In a Nutshell	
	Cells	
	Contact Area	
	Molecules	
	Virtual Molecules	
	Confinement Distance	
	Membrane Separation	
	Penalizing Sub-Optimal Distances	
	Adjusting the Rate of Association	134
	Region Entry	134
	Simulating Receptor Dynamics	

Simulating Release	137
Simulating Diffusion	137
Simulating Directed Movement	138
Simulating Binding	139
Results and Discussion	142
Testing the Binding and Release Algorithms	142
Binding Takes Place in Two Phases	142
The Diffusion Coefficient is Important in the Second Phase	143
Accurate Diffusion Coefficients are Rare but Important	143
Simulating the Benefits of LFA-1 Activation	145
Everything that Binds and Diffuses Should Accumulate	147
A Study of Synapse Formation during T cell Activation	148
Simulating $\gamma\delta$ T cell Activation	151
Regardless of Peptide, the MHC Will Accumulate	152
Future Directions	153
Figure Legends	154
List of References	168

List of Tables

Table 1.1: Expression levels of genes expressed preferentially by MLN $CD8^+ \alpha\beta$ T cell	S
(A and B) and of genes upregulated by these cells after Yersinia infection (C)	27
Table 1.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs	28
Supplemental Table 1.1: Cell-surface molecules expressed by MLN CD8 ⁺ $\alpha\beta$ T cells . 2	29
Supplemental Table 1.2: Fifteen most abundantly-expressed genes of $\gamma\delta$ IELs (A), MLN	٧
$CD8^+ \alpha\beta$ T cells (B), and epithelial cells (C)	30
Supplemental Table 1.3: Genes up- or down-regulated by $\gamma\delta$ IELs after <i>Yersinia</i>	
infection	31
Supplemental Table 1.4: Genes upregulated by MLN CD8 ⁺ $\alpha\beta$ T cells following	
Yersinia infection	32
Supplemental Table 1.5: Genes expressed preferentially by $\gamma\delta$ IELs (page 1 of 2)	33
Supplemental Table 1.5: Genes expressed preferentially by $\gamma\delta$ IELs (page 2 of 2)	34
Supplemental Table 1.6: Signal transduction and transcription factors expressed	
preferentially by MLN CD8 ⁺ $\alpha\beta$ T cells	35
Table 2.1: Expression levels of genes expressed preferentially by MLN $CD8^+ \alpha\beta$ T cell	S
5	50
Table 2.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs (page 1 of 4)	
	51
Table 2.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs (page 2 of 4)	
	52
Table 2.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs (page 3 of 4)	
	53
Table 2.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs (page 4 of 4)	
	54
Table 3.1: Activation-induced changes	
Table 3.2: TCR-associated transcripts	
Table 3.3: NF-κB-associated transcripts	
Table 3.4: Effector function transcripts 9) 7

Table 3.5: Cytokine-associated transcripts	98
Table 3.6: Protein synthesis-associated transcripts	99
Table 3.7: HSP and chaperone-associated transcripts	100
Table 3.8: Nuclear import-associated transcripts	100
Table 3.9: Proliferation and apoptosis-associated transcripts	101
Table 3.10: WNT-associated transcripts	101
Table 3.11: Krüppel-like factor transcripts	102
Table 3.12: Activation-induced cell surface receptors	102
Table 3.13: CD1-associated transcripts	102
Table 3.14: Metabolism-associated transcripts	103

List of Illustrations

Figure 1.1: γδ IELs express (A) CD69, (B) 2B4, and (C) I-A	26
Supplemental Figure 1.1: Transcripts of $\gamma\delta$ T lymphocytes in the intestinal intraepithe	elial
layer (yo IELs) do not change significantly after Yersinia infection but differ from tho	se
of mesenteric lymph node (MLN) CD8 ⁺ T cells and epithelial cells	26
Figure 2.1: Activated IELs and splenic $\gamma\delta$ T cells show differences in gene expression	1
while TCR-mediated IEL activation only leads to minor changes in gene expression	49
Figure 3.1: T10/T22 expression is strain dependent, inducible, and higher on B cells i	n
the blood than in the spleen	89
Figure 3.2: $\gamma\delta$ T cells and $\alpha\beta$ T cells show a different distribution in the spleen,	
mesenteric lymph node, and thymus of a G8 BALB/c mouse	90
Figure 3.3: Splenic G8 $\gamma\delta$ T cells and $\alpha\beta$ T cells express similar genes	91
Figure 3.4: Lymphoid organs are different in G8 RAG2 ^{KO} BALB/c mice	92
Figure 3.5: G8 $\gamma\delta$ T cell activation leads to TCR downregulation, the expression of	
CD69 and CD44, blasting, and cell division	93
Figure 3.6: B10.BR and H2 ^{k/d} BALB/c splenocytes do not activate G8 $\gamma\delta$ T cells as w	ell
in cocultures as b haplotype-expressing splenocytes	94
Figure 3.7: G8 $\gamma\delta$ T cell activation leads to large changes in gene expression	95
Figure 4.1: $\gamma\delta$ T cells activated by cells expressing T10/T22 ^b downregulate their cell-	
surface $\gamma\delta$ TCR levels, blast, and express activation markers	123
Figure 4.2: G8 $\gamma\delta$ T cell activation induces CD69 expression on B cells in an IFN γ - at	nd
IL-4-dependent manner	124
Figure 4.3: G8 yo T cell activation induces B7.2 expression on B cells in an IFNy- and	d
IL-4-dependent manner	125
Figure 4.4: The activation of G8 $\gamma\delta$ T cells induces T10/T22 expression on B cells and	d
G8 $\gamma\delta$ T cells during the coculture	126
Figure 4.5: IFN γ and IL-4 are mostly produced by activated G8 $\gamma\delta$ T cells in the	
cocultures of G8 RAG2 ^{KO} BALB/c and H2 ^{b/d} BALB/c splenocytes	127
Figure 5.1: An illustration of some concepts in the simulation	159

Simulating receptor dynamics
The binding and release equations lead to proper equilibrium binding 161
Receptor binding takes place in two phases
Diffusion affects the second phase of binding 162
The importance of affinity and mobility in LFA-1 activation163
Whichever way mobile molecules bind, they always form a synapse 164
Ligand numbers, directed movement, and CD2 are all important for T cell
The effects of T10/T22 ^b levels on G8 $\gamma\delta$ T cell TCR levels and signaling. 166
: Peptide-independent MHC accumulation 167

General Introduction

The immune system is subject to natural selection. The innate immune system, which operates in plants and animals, consists of physical barriers, cells, mechanisms and effector functions that can deal with infections in a fixed way. The adaptive immune system, which is only found in vertebrate animals, is characterized by cells that express diverse receptors as a consequence of somatic gene rearrangement. In mammals, the adaptive immune system is comprised of B and T lymphocytes, which, unlike cells of the innate immune system that express receptors that are germline-encoded, are capable of antigen-specific responses to infection. These antigen-specific responses are essential for the maintenance of host immune competence.

T lymphocytes can be subdivided into $\alpha\beta$ T cells and $\gamma\delta$ T cells based on the rearranged receptors they express. Early studies revealed that $\gamma\delta$ T cells are the first to appear in thymic ontogeny and that, as the appearance and the development of $\alpha\beta$ T cells progresses, the number of $\gamma\delta$ T cells remains similar but ends up only representing about 5% of the lymphocytes in the spleen and lymph nodes. On the other hand, $\gamma\delta$ T cells appear to contribute more to the lymphocyte pools in various mucosal tissues including the small intestine, the uterus, and the skin.

In general, $\gamma\delta$ T cells and $\alpha\beta$ T cells were found to be able to mount similar immune responses. Along those lines, CD16⁺ $\gamma\delta$ T cell clones were capable of antibodydependent cellular cytotoxicity (Borst, van de Griend et al. 1987), $\gamma\delta$ T cell clones were often capable of killing tumor target cells while freshly-isolated $\gamma\delta$ T cells were not (Lanier, Kipps et al. 1985), freshly-isolated Thy-1⁺ $\gamma\delta$ T cells in the intraepithelial lymphocyte compartment of the small intestine ($\gamma\delta$ IELs) were capable of killing cells in redirected lysis experiments (Klein and Kagnoff 1984; Klein 1986; Goodman and Lefrancois 1988; Lefrancois and Goodman 1989), and, collectively, $\gamma\delta$ T cells and cell lines and hybridomas thereof were reported to be capable of producing cytokines such as IL-2 (Yokoyama, Koning et al. 1987), GM-CSF, IL-4 (Roberts, Yokoyama et al. 1991), IFN γ , and TNF α (Christmas and Meager 1990).

An apparent similarity between $\gamma\delta$ T cells and $\alpha\beta$ T cells may have been due to the assays that were performed because it was possible that $\gamma\delta$ T cells performed yet unknown functions. Early experiments suggested that T cells were important in controlling intravenous primary *Listeria* infection and that $\gamma\delta$ T cells could partially substitute for $\alpha\beta$ T cells, although $\alpha\beta$ T cells were needed for the development of memory responses while $\gamma\delta$ T cells had an effect on controlling lesion formation in infected livers (Mombaerts, Arnoldi et al. 1993). Similar results were observed in an HSV-1 infection model, where both $\gamma\delta$ T cells and $\alpha\beta$ T cells were sufficient to resolve infections (Sciammas, Kodukula et al. 1997). In the case of coxsackievirus B3 infection, it has been suggested that differences in IFNy and IL-4 production by Vy4V δ 4- and Vy1V δ 4-expressing y δ T cells influence the cytokine production of CD4⁺ $\alpha\beta$ T cells and determine whether mice develop myocarditis (Huber, Graveline et al. 2001). Additional studies have implicated $\gamma\delta$ T cells in immune responses against pathogens such as Influenza virus (Carding, Allan et al. 1990), Mycobacterium tuberculosis (Janis, Kaufmann et al. 1989), Nippostrongylus brasiliensis (Ferrick, Schrenzel et al. 1995), Nocardia brasiliensis (King, Hyde et al. 1999), Sendai virus (Ogasawara, Emoto et al. 1994), and Toxoplasma gondii (Kasper, Matsuura et al. 1996), although the reason and significance of their involvement has remained mostly unclear.

The observations that $\gamma\delta$ TCRs, unlike $\alpha\beta$ TCRs, do not have a propensity for recognizing peptides associated with MHC molecules, that $\gamma\delta$ TCRs can recognize antigens directly without requiring their processing and presentation, and that the CDR3 length distribution of the TCR δ chain is more similar to that of the immunoglobulin heavy chain than to that of the TCR α and β chains (Rock, Sibbald et al. 1994), suggested that $\gamma\delta$ T cells and $\alpha\beta$ T cells recognized different types of antigens (reviewed in (Chien, Jores et al. 1996)). While this may partially explain why these two cell types have different functions, it also presents a major problem because the antigens recognized by $\gamma\delta$ T cells have been and still remain difficult to identify. In fact, to date, the only natural ligands that have been identified for murine $\gamma\delta$ T cells are the MHC class Ib molecules T10 and T22 (Crowley, Fahrer et al. 2000). The lack of known $\gamma\delta$ TCR ligands has stymied efforts to determine the function of $\gamma\delta$ T cells because, without this information, it is difficult to know when and where $\gamma\delta$ T cells activate and how $\gamma\delta$ T cells act upon recognition of $\gamma\delta$ TCR ligands. One such example is the oral *Yersinia pseudotuberculosis* infection model developed by Elizabeth M. Kerr in Mark M. Davis' lab. She found that, compared to wild-type mice, TCR δ chain-deficient mice that were orally infected with *Yersinia pseudotuberculosis* had bacteria spread to the spleen one day faster and, unlike wild-type mice, frequently still had bacteria in their mesenteric lymph nodes (MLNs) 5 days after infection (Kerr 1998). Because the murine small intestine contains a large number of IELs of which a sizeable amount are $\gamma\delta$ T cells (Goodman and Lefrancois 1988), because oral *Yersinia* infection occurs through the small intestine, and because it had been reported that the presence of $\gamma\delta$ IELs may play a role in the turnover of epithelial cells and their expression of MHC class II (Komano, Fujiura et al. 1995), this suggested that $\gamma\delta$ IELs may play a role in the defense against oral *Yersinia* infection and that this infection model could be used to study how $\gamma\delta$ T cells respond to infection.

Chapter 1 deals with the *Yersinia* infection model, where I helped analyze the responses of $\gamma\delta$ IELs using microarray analysis. Interestingly, $\gamma\delta$ IELs showed only minor changes to their transcripts in response to infection. In addition, $\gamma\delta$ IELs were found to constitutively express genes associated with effector functions. This differed from MLN CD8⁺ $\alpha\beta$ T cells, which only expressed such genes in response to infection. While these results indicated that $\gamma\delta$ IELs function differently than MLN CD8⁺ $\alpha\beta$ T cells, the question of why $\gamma\delta$ T cells are important in *Yersinia* infection remained unanswered.

It has been reported that $\gamma\delta$ IELs can express keratinocyte growth factor following $\gamma\delta$ TCR crosslinking (Boismenu and Havran 1994) but we did not find this gene to be expressed in our analysis. This raised the possibility that, when $\gamma\delta$ IELs recognize antigens through their $\gamma\delta$ TCRs, they may mount different responses than during *Yersinia* infection. In addition, it is unclear why $\gamma\delta$ IELs express diverse $\gamma\delta$ TCRs when they appear to constitutively express genes associated with effector functions.

In **Chapter 2**, I take advantage of the availability of the mice that are transgenic for the G8 γδ TCR (Dent, Matis et al. 1990), which is specific for T10 and T22, in order to address the transcriptional responses of $\gamma\delta$ IELs to the recognition of stimulatory $\gamma\delta$ TCR ligands. In **Chapter 3**, these experiments are extended to study the responses of splenic $\gamma\delta$ T cells. Surprisingly, the splenic G8 $\gamma\delta$ T cells were not the only cells that became activated when they were cocultured with splenocytes that expressed their ligands. B cells were also found to activate based on their expression of CD69 and their enhanced expression of B7.2, MHC class II, and T10/T22. In Chapter 4, I show that this activation of B cells is primarily due to the synergistic effects of two cytokines, IFNy and IL-4, which are produced in response to G8 $\gamma\delta$ T cell activation. Lastly, when a T cell encounters a TCR ligand-expressing cell, the interaction can lead to the formation of an immunological synapse where there is an accumulation and often-ordered distribution of molecules at the contact area between the cells. This process may influence the outcome of the T cell activation and the T cell's subsequent effector functions. Chapter 5 deals with a simulation of cell-to-cell contact that I designed and its use to study T cell activation and synapse formation.

Overall, the transcriptional responses to the recognition of stimulatory $\gamma\delta$ TCR ligands differ greatly between $\gamma\delta$ IELs and splenic $\gamma\delta$ T cells. However, the genes expressed by $\gamma\delta$ and $\alpha\beta$ T cells in the spleens of G8 $\gamma\delta$ TCR-transgenic mice do not appear to differ much, and the same has been reported for CD8 $\alpha\alpha^+$ $\gamma\delta$ and $\alpha\beta$ IELs in conventional mice (Shires, Theodoridis et al. 2001). Thus, it will be important to determine the ligands that are recognized by $\gamma\delta$ T cells in order to determine when these cells encounter their ligands *in vivo*.

In addition, one of the exiting observations of all of these experiments is that not all $\gamma\delta$ T cells activate, not all B cells express the same amount of T10/T22, not all $\gamma\delta$ T cells downregulate their $\gamma\delta$ TCRs by the same amount, not all $\gamma\delta$ T cells express the same amount of PD-1 or Lag-3 after activation, not all $\gamma\delta$ T cells express IFN γ , etc. There is an amazing diversity in a system that is based around a single $\gamma\delta$ TCR and two high affinity ligands. In the future, it will be necessary to characterize $\gamma\delta$ T cells, and all cells, at a single cell level.

Chapter 1: Attributes of γδ Intraepithelial Lymphocytes as Suggested by Their Transcriptional Profile

Aude M. Fahrer^{*†}, Yves Konigshofer[‡], Elizabeth M. Kerr[‡], Ghassan Ghandour[∥], David H. Mack[∥], Mark M. Davis^{*‡***}, and Yueh-hsiu Chien^{*‡}

* Department of Microbiology and Immunology, [‡] Program in Immunology, and ^{**} Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305; and [∥] Eos Biotechnology, South San Francisco, CA 94080

Foreword

This chapter has been reproduced from Proceedings of the National Academy of Sciences of the United States of America, 2001, vol. 98, no. 18, pp 10216 – 10266 and is Copyright 2001 National Academy of Sciences, U.S.A. Some of the genes listed in the tables have been updated with respect to their names. Y.C., together with M.M.D., A.M.F., and E.M.K. are responsible for the experimental designs. A.M.F. and E.M.K. set up and performed the $\gamma\delta$ IEL-related as well as the MLN CD8⁺ $\alpha\beta$ T cell experiments together. A.M.F. and Y.C. performed the initial analyses of the microarray data and Y.K. performed subsequent analyses. Y.C., M.M.D., A.M.F., and Y.K. are responsible for the initial analyses of the microarray data and P.K. for the interpretation of the results. G.G. provided expertise in statistical analysis of the microarray data and D.H.M. provided experimental expertise and microarrays from Affymetrix.

Abstract

 $\gamma\delta$ T lymphocytes in the intestinal intraepithelial layer ($\gamma\delta$ IELs) are thought to contribute to immune competence, but their actual function remains poorly understood. Here we used DNA microarrays to study the gene expression profile of $\gamma\delta$ IELs in a *Yersinia* infection system to better define their roles. To validate this approach, mesenteric lymph node CD8⁺ $\alpha\beta$ T cells were similarly analyzed. The transcription profiles show that, whereas lymph node CD8⁺ $\alpha\beta$ T cells must be activated to become cytotoxic effectors, $\gamma\delta$ IELs are constitutively activated and appear to use different signaling cascades. Our data suggest that $\gamma\delta$ IELs may respond efficiently to a broad range of pathological situations irrespective of their diverse T cell antigen receptor repertoire. $\gamma\delta$ IELs may modulate local immune responses and participate in intestinal lipid metabolism, cholesterol homeostasis, and physiology. This study provides a strong basis for further investigations of the roles of these cells as well as mucosal immune defense in general.

Introduction

Despite intense efforts, the functional roles of $\gamma\delta$ T cells in maintaining host immune defense remain enigmatic. One unique feature of $\gamma\delta$ T cells that distinguishes them from $\alpha\beta$ T cells is their tissue distribution. Although $\gamma\delta$ T cells represent a small percentage (<5%) of the lymphocytes in the central immune system of humans and mice. they are a sizable population (10 - 50%) in the mucosal epithelia (Sim 1995; Kaufmann 1996). The murine $\gamma\delta$ T lymphocytes in the intestinal intraepithelial layer ($\gamma\delta$ IELs) exhibit a diverse T cell antigen receptor (TCR) repertoire (Asarnow, Goodman et al. 1989; Takagaki, DeCloux et al. 1989) and thus have the potential to recognize a variety of antigens. These cells have been implicated in regulating the development of epithelial cells (Komano, Fujiura et al. 1995) and in controlling intestinal $\alpha\beta$ T cell responses in an Eimeria vermiformis infection model (Roberts, Smith et al. 1996). Recently, we found that mice lacking $\gamma\delta$ T cells (TCR δ^{-1}) are much less resistant than either normal mice or mice without $\alpha\beta$ T cells (TCR $\beta^{-/-}$) to the dissemination of the enteric pathogen *Yersinia pseudotuberculosis* to the liver and spleen 1 - 4 days following oral infection (Kerr 1998). To gain insight into the scope of $\gamma\delta$ IEL responses in this system, we compared the gene expression of γδ IELs isolated from mice orally infected with Yersinia to that of $\gamma\delta$ IELs isolated from uninfected animals by using the Affymetrix (Santa Clara, CA) GeneChip technology (Lipshutz, Fodor et al. 1999). This approach allowed us to examine a large number of transcripts including many not associated with lymphocyte functions and to gain insight into the cellular mechanisms operating in $\gamma\delta$ IELs. To validate the experimental approach, and to serve as a basis of comparison for the $\gamma\delta$ IEL data, we also analyzed the expression profiles of mesenteric lymph node (MLN) $CD8^+$ $\alpha\beta$ T cells at the peak of the peripheral responses to oral *Yersinia* infection (Kerr 1998).

We find that, whereas transcripts associated with cytotoxic functions and activation are significantly induced in CD8⁺ $\alpha\beta$ T cells by the infection, $\gamma\delta$ IELs from infected and uninfected animals appear to be constitutively activated and to express very high levels of cytotoxic genes. Interestingly, $\gamma\delta$ IELs express several inhibitory receptors, which could keep their effector functions in check but allow them to be readily

turned on with little or no *de novo* transcription. These properties could allow these cells to participate in both innate and acquired immune defense by responding quickly to a broad range of pathological situations irrespective of their diverse TCR repertoire. Our data also show that $\gamma\delta$ IELs may recruit other leukocytes and down-regulate immune responses by targeting cells such as macrophages. Surprisingly, $\gamma\delta$ IELs express genes associated with lipid and cholesterol metabolism that are complementary to those expressed by the intestinal epithelial cells, suggesting a new role for $\gamma\delta$ IELs in intestinal homeostasis and physiology. Overall, this approach has allowed us to evaluate many more potential attributes of $\gamma\delta$ IELs than previously possible and provides important insights into $\gamma\delta$ IEL regulation and function.

Methods

Sample Preparation

Seven- to twelve-week-old female C57Bl/6 mice (The Jackson Laboratory and Stanford University) deprived of food overnight were infected by oral gavage with *Y*. *pseudotuberculosis* YPIII or with a YopE mutant bacterium (kindly provided by Stanley Falkow, Stanford University). $\gamma\delta$ IELs were isolated 5 days after mice were infected with $5x10^8$ colony-forming units (cfu) of *Y. pseudotuberculosis* YPIII. $\alpha\beta$ T cells were isolated 10 days after mice were infected with $1x10^8$ cfu of *Y. pseudotuberculosis* YPIII or with a YopE mutant. $\alpha\beta$ T cells isolated from YPIII- or YopE-mutant-infected animals showed virtually no difference in gene expression. Therefore, no distinction was made in the data analysis here.

Cells from the small intestine were isolated as described (Wang, Whetsell et al. 1997) but without the gradient step. $\gamma\delta$ IELs were isolated by positively selecting with biotin-conjugated GL3 (anti- δ chain) antibody and avidin-conjugated magnetic beads (Dynal, Oslo). CD8⁺ $\alpha\beta$ T cells from mesenteric lymph nodes were isolated by negative depletion with FITC-conjugated antibodies against CD4, B220, CD11b, $\gamma\delta$ TCR, and anti-FITC-conjugated magnetic beads (PerSeptive Biosystems, Framingham, MA) followed by FACS sorting with phycoerythrin-conjugated anti-CD8 α antibody. CD8⁺ FITC⁻ cells were collected. Epithelial cells were obtained by sorting intestinal cell suspensions on the basis of forward and side scatter profiles and propidium iodide exclusion. The purity of the cells was estimated to be greater than 95% for $\gamma\delta$ IELs and epithelial cells and greater than 99% for CD8⁺ $\alpha\beta$ T cells. Analysis of RNA expression by using Affymetrix GeneChip microarrays was carried out according to published procedures (Glynne, Akkaraju et al. 2000) with at least 1x10⁷ cells for each sample, isolated from a minimum of three mice.

GeneChip Data Analysis

Each gene is represented by ≈ 20 probe pairs on the array. Each probe pair consists of a 25-mer oligo complementary to the gene of interest [the perfect match (PM) Copyright 2001 National Academy of Sciences, U.S.A. Reproduced from Proceedings of the National Academy of Sciences of the United States of America; 2001, vol. 98, no. 18, pp 10216 – 10266 oligo] and a second mismatched (MM) oligo, which contains a single base change at the middle nucleotide. Expression values represent the median of PM-MM values for each gene after normalization. Chips were normalized on the basis of the 75th percentile of PM-MM values for all probe pairs (PM-MM values for each chip were multiplied by the 42/75th percentile for that chip). GeneChip 3.0 software (Affymetrix) was used to determine the presence or absence of mRNA for specific genes in each sample. Analysis specific for individual sets of data is described in the table legends.

Results

Gene Expression Correlates Well with Known Protein Expression and Cell Function

To determine the gene expression patterns of $\gamma\delta$ IELs and MLN CD8⁺ $\alpha\beta$ T cells from uninfected and *Yersinia*-infected mice, duplicate samples of mRNA were prepared from isolated cell populations. In addition, one sample of mRNA isolated from intestinal epithelial cells was also analyzed. Of the 6,352 probe sets found on the microarrays, about 2,100 genes were expressed by the lymphocytes (both $\alpha\beta$ and $\gamma\delta$ T cells), and about 800 genes were expressed by the epithelial cells. This difference in the number of genes expressed presumably reflects a bias in the database towards mRNAs identified from hematopoietic cells.

Genes expected to be expressed in $\alpha\beta$, $\gamma\delta$ T cells, and epithelial cells were identified in the array analysis. These include the T cell receptors, lymphocyte cell surface markers and structural genes characteristic of each cell type. A partial list of cell surface molecules expressed in CD8⁺ $\alpha\beta$ T cells is shown in *Table 1.1* and *Supplemental Table 1.1*. As expected, there is no linear correlation between the expression levels of genes identified from epithelial cells and either T cell population. Interestingly, the differences in individual gene expression levels between mesenteric CD8⁺ $\alpha\beta$ T cells and $\gamma\delta$ IELs are much greater than those observed between the same cell types isolated from infected and uninfected animals, as discussed in the next section (*Supplemental Figure 1.1*).

Effector Function Genes Are Constitutively Expressed in γδ IELs but Induced in

MLN CD8⁺ $\alpha\beta$ T Cells

Many of the abundantly expressed genes in $\gamma\delta$ IELs are associated with specialized functions. Genes coding for Granzymes A, B and RANTES are among the ten most abundantly expressed mRNAs (*Supplemental Table 1.2*). Surprisingly, these genes are expressed at similarly high levels in cells isolated from both infected and uninfected mice. In fact, only 37 genes and ESTs are identified as having statistically significant, albeit small (less than 3-fold), differences between infected and uninfected $\gamma\delta$ Copyright 2001 National Academy of Sciences, U.S.A. Reproduced from Proceedings of the National Academy of Sciences of the United States of America; 2001, vol. 98, no. 18, pp 10216 – 10266 IEL samples (*Supplemental Table 1.3*). None of these is thought to be associated with cell activation or effector function.

That almost all of the genes associated with effector function and activation are expressed at comparable levels in $\gamma\delta$ IELs from infected and uninfected mice is clearly not a failure of the detection system. A large increase in the expression of genes encoding cytotoxic functions (e.g., Granzymes A and B), the chemokine RANTES, and activation markers (e.g., Ly-6E) was readily observed in mesenteric CD8⁺ $\alpha\beta$ T cells from infected mice compared with those from uninfected mice (*Table 1.1* and *Supplemental Table 1.4*). This difference was seen despite the fact that only 8% of the lymph node CD8⁺ $\alpha\beta$ T cell population from infected animals showed an activated phenotype (CD44^{hi}, L-selectin^{low}).

It is also unlikely that the $\gamma\delta$ IEL transcription program is activated by the isolation procedure, which includes a 30-min 37°C incubation to detach the IELs (all subsequent steps in the isolation procedure are carried out at 0 – 4°C, precluding significant mRNA synthesis). RNA samples were obtained from a whole intestine manipulated only to remove Peyer's patches and from a whole intestine processed to detach, but not remove, epithelial cells and IELs. Similar levels of Granzyme A and RANTES were found in both samples by Northern analysis (*data not shown*). Consistent with this finding, all $\gamma\delta$ IELs, but not most splenic $\gamma\delta$ T cells that underwent the same isolation procedures, showed surface CD69 expression – a marker associated with activated natural killer (NK) cells, $\alpha\beta$ T cells, and B cells (the gene is not represented on the chips) (*Figure 1.1A* and *data not shown*).

In addition, all $\gamma\delta$ IEL samples express genes implicated in sustaining specialized cell functions. These include genes associated with growth arrest (e.g., *c-fes*, *gadd45*, *gadd153*, and *gas3*) and differentiation (e.g., *atf-4*, *blimp-1*, *cdc25*, *mad*, *tis21*, and *agp/ebp*). Several proteases and enzymes (e.g., Furin, Mep-1, CD73), which have been implicated in the maturation of molecules associated with growth and differentiation, are also expressed (*Table 1.2* and *Supplemental Table 1.5*). Taken together, these results indicate that $\gamma\delta$ IELs in uninfected animals are constitutively activated to transcribe genes associated with effector functions.

$\gamma\delta$ IELs May Be Activated Through Signaling Pathways Distinct from Those in $\alpha\beta$ T Cells

Despite $\gamma\delta$ IELs having an activated phenotype, they do not appear to express transcripts for certain key signaling proteins used by $\alpha\beta$ T cells. These include protein kinase C θ (PKC θ), an important component of TCR-mediated NF- κ B activation in mature $\alpha\beta$ T cells (Sun, Arendt et al. 2000), and diacylglycerol kinase α (Sakane and Kanoh 1997), a protein responsible for the removal of diacylglycerol, which normally activates PKC θ . Conversely, PI3-kinase (Rameh and Cantley 1999) levels are increased when compared with $\alpha\beta$ T cells. Whereas the signal transduction genes preferentially expressed by MLN CD8⁺ $\alpha\beta$ T cells (*Table 1.1* and *Supplemental Table 1.6*) largely fit into known lymphocyte signaling pathways, those preferentially expressed by $\gamma\delta$ IELs do not (*Table 1.2* and *Supplemental Table 1.5*).

In this context, it is interesting to note that although $\gamma\delta$ IELs express high levels of RANTES, RFLAT-1, which is important in the later stages of RANTES expression after CD8⁺ $\alpha\beta$ T cell activation (Song, Chen et al. 1999), is not expressed. Because the RANTES promoter contains NF- κ B- and interferon regulatory factor-binding sites, the expression of RANTES could result from signals from tumor necrosis factor (TNF) α and IFN γ , respectively (Lee, Hong et al. 2000). In fact, both the TNF α and IFN γ receptor genes are expressed in $\gamma\delta$ IELs. Thus, some of the effector genes expressed by both $\gamma\delta$ and peripheral $\alpha\beta$ T cells appear to be triggered by different signaling cascades in the two cell types.

γδ IEL Function

Because the gene expression pattern of $\gamma\delta$ IELs is characteristic of that of effector cells, whereas the gene expression pattern of $\alpha\beta$ T cells is typical of that of naïve cells, we analyzed the genes preferentially expressed in $\gamma\delta$ IELs to identify potential $\gamma\delta$ IEL functions. This analysis was complemented by a search through all the data sets for the

expression of particular genes. Some of these genes, subdivided by function, are shown in *Table 1.2* and *Supplemental Table 1.5*.

$\gamma\delta$ IELs Have the Potential to Kill a Variety of Targets by Using Different

Mechanisms

In addition to Granzymes A and B, $\gamma\delta$ IELs were found to express other cytotoxic mediators. These include the antimicrobial peptide cryptdin, an α -IFN homolog, lymphotoxin β , Fas ligand, and genes implicated in generating or enhancing the lytic response of NK cells such as NKR-P1A, NKR-P1C, LAG-3, and 2B4. LAG-3 has been reported to bind class II MHC (Baixeras, Huard et al. 1992), suggesting that macrophages, B cells, and epithelial cells may interact with $\gamma\delta$ IELs. 2B4 is related to CD2 and binds to the same ligand, CD48 (Brown, Boles et al. 1998). The expression of 2B4, but not CD2, on virtually all $\gamma\delta$ IELs can be demonstrated by FACS (*Figure 1.1B* and *data not shown*).

Intriguingly, mRNAs coding for a variety of inhibitory receptors (CTLA-4, gp49, PD-1, and the NK inhibitory receptors Ly49-E, F, and G) are found in the $\gamma\delta$ IEL samples. Because our data suggest that $\gamma\delta$ IELs are actively transcribing genes related to effector functions, it seems likely that these cells, although ready to act, are being held back by inhibitory receptors *in situ*. Most functions could thus be kept in check and yet be readily turned on, with little or no *de novo* transcription. This interpretation would also be consistent with the very few differences in gene expression seen between $\gamma\delta$ IELs from infected versus uninfected mice (*Supplemental Table 1.3*).

γδ IELs Can Recruit Other Leukocytes, Down-Regulate Immune Responses, and

Present Antigens on Class II MHC

 $\gamma\delta$ IELs express genes that are known to down-regulate immune responses. These include TGF β and TJ6/J6B7. Perhaps the most intriguing one is Eta-1 (osteopontin), which has been postulated to be part of a surprisingly rapid T cell-dependent response to infection preceding classical forms of T cell-dependent immunity. Recent experiments Copyright 2001 National Academy of Sciences, U.S.A. Reproduced from Proceedings of the National Academy of Sciences of America; 2001, vol. 98, no. 18, pp 10216 – 10266

indicate that Eta-1 can differentially regulate macrophage IL-10 and -12 expression and thereby play a key role in the establishment of cell-mediated immune responses to viral and bacterial infections (Ashkar, Weber et al. 2000). After *Listeria* infection, mice deficient in Eta-1 fail to form granulomas – a phenotype that is also observed in mice deficient in $\gamma\delta$ T cells (Mombaerts, Arnoldi et al. 1993; Fu, Roark et al. 1994).

Transcripts corresponding to chemokines such as RANTES, lymphotactin, macrophage inflammatory protein (MIP)-1 α , and MIP-1 β are present in $\gamma\delta$ IEL populations. It is worth noting that other than very low levels of IL-2, none of the other cytokines on the arrays, including IL-1 – 5, -7, -10 – 12, -15, and -17 and IFN γ , were expressed. This expression pattern suggests that, whereas $\gamma\delta$ IELs may play a role in recruiting other leukocytes, their ability to modify immune responses may be more focused.

With respect to cytokine receptor genes, $\gamma\delta$ IELs express the β and γ chains of the IL-2R, the IL-4R, the β chain of the IL-12R, receptors for IFNs α , β , and γ , tumor necrosis factor receptors 1 and 2, and also 114/A10, a responsive element of IL-3. Cytokine receptor gene transcripts not found in $\gamma\delta$ IELs include the receptors for IL-3, -5 – 11, -15, and -17. Additionally, $\gamma\delta$ IELs transcribe the gene encoding the (bacterial) lipopolysaccharide-induced chemokine receptor (L-CCR), but lack transcripts for CXCR4 and CCR7 that are associated with peripheral homing. In fact, the transcripts for L-selectin, α -actinin-1, and lymphocyte function-associated antigen-1 are also absent in $\gamma\delta$ IELs. Thus, $\gamma\delta$ IELs lack both the extracellular and intracellular components required for peripheral homing.

 $\gamma\delta$ IELs expressed both the invariant chain and MHC class II molecules. FACS analysis showed that 15% of the $\gamma\delta$ IELs express I-A on the surface (*Figure 1.1C*). This finding indicates that $\gamma\delta$ IELs may serve as antigen-presenting cells for CD4⁺ $\alpha\beta$ T cells, possibly presenting peptides from intestinal lumen- or epithelial cell-derived antigens.

γδ IELs May Contribute to Intestinal Lipid Metabolism, Cholesterol Homeostasis, and Physiology

The most surprising result is the expression of many genes relating to lipid and cholesterol metabolism in the $\gamma\delta$ IELs samples (*Table 1.2* and *Supplemental Table 1.5*). Cholesterol is a major structural component of the plasma membrane lipid rafts where many signaling proteins are found in activated T and B cells (reviewed in (Langlet, Bernard et al. 2000)). Thus, the enhanced expression of genes involved in the cholesterol biosynthetic pathway is compatible with our proposal that $\gamma\delta$ IELs are constitutively activated. In addition, the expression of these genes may also be important in intestinal physiology.

Although it is well known that the small intestine plays a major role in the metabolism of dietary lipids, it is commonly assumed that these functions are carried out by enterocytes, a major population of epithelial cells. Indeed, high levels of transcripts for fatty acid-binding protein and apolipoproteins A-I, A-IV, and C-III were detected in epithelial cell mRNA. Unexpectedly, mRNAs for apolipoprotein E, phospholipidbinding protein, low-density lipoprotein receptor, and some enzymes involved in fatty acid, lipid, and cholesterol biosynthesis were expressed only in the $\gamma\delta$ IEL samples. The expression of these transcripts raises the possibility that lipid metabolism is carried out through the collaboration of epithelial cells and $\gamma\delta$ IELs. These results also suggest that $\gamma\delta$ IELs may play a role in the generation of lipoprotein particles including chylomicrons, very low density lipoprotein, and high-density lipoprotein. The lipoprotein particles may promote the efflux of cholesterol from the membranes of dying cells and provide cholesterol to the rapidly dividing epithelial cells, thereby maintaining homeostasis. Consistent with the supposition that $\gamma\delta$ IELs are involved in lipid/cholesterol metabolism, two of the six genes that show an increase in cells isolated from infected versus uninfected animals are involved in glycolipid metabolism (Supplemental Table 1.3).

The protein encoded by *adh-1*, ADH-A2, is the only known murine class I alcohol dehydrogenase that is capable of oxidizing retinol (vitamin A) to retinaldehyde. This process is the first enzymatic step in the conversion of retinol into its biologically active metabolite, retinoic acid, a potent inducer of cellular differentiation and morphogenesis. Copyright 2001 National Academy of Sciences, U.S.A. Reproduced from Proceedings of the National Academy of Sciences of America; 2001, vol. 98, no. 18, pp 10216 – 10266

The expression of ADH-A2 is absent in the $\alpha\beta$ T cell samples and is expressed at a lower level in epithelial cells. Carbonic anhydrase II may regulate the acid-base balance within IELs. The abundance of transcripts encoding this protein suggests that IELs may exist in an environment where the pH may reach drastically different levels compared with the normal blood circulation.

The production of keratinocyte growth factor (KGF) by *in vitro* culturing of $\gamma\delta$ IELs with TCR crosslinking (Boismenu and Havran 1994) has led to a proposed role for these cells to maintain intestinal homeostasis. We failed to detect KGF expression in any $\gamma\delta$ IEL samples.

Discussion

In this report, we have characterized the gene expression pattern of $\gamma\delta$ IELs in an effort to understand why these cells are important in the initial protection against oral *Yersinia* infection. Surprisingly, we found hardly any transcriptional changes in $\gamma\delta$ IELs as the result of infection. Instead, $\gamma\delta$ IELs from uninfected as well as infected animals appeared to be activated and transcribed high levels of cytotoxic and other genes associated with specialized functions. Although these results preclude us from estimating the magnitude of the $\gamma\delta$ IEL response to *Yersinia* infection, they provide an important and unexpected clue for understanding how $\gamma\delta$ IELs may function as a "first line of defense" against pathogens entering the digestive system.

It is commonly assumed that $\gamma\delta$ IELs require antigen recognition to induce effector functions. This is because almost all the well-defined functions attributed to freshly isolated $\gamma\delta$ IELs were observed in *in vitro* assays with anti-CD3 antibody to crosslink the TCR. These include the spontaneous lytic response of $\gamma\delta$ IELs as assayed in anti-CD3 redirected lysis (Lefrancois and Goodman 1989) and the transcription of KGF (Boismenu and Havran 1994) and lymphotactin (Boismenu, Feng et al. 1996) mRNAs in $\gamma\delta$ IELs after *in vitro* activation with plate bound anti-CD3 antibody. Our data show that freshly isolated $\gamma\delta$ IELs constitutively express very high levels of Granzymes A and B and RANTES transcripts, that these cells express NK-activating and inhibitory receptors, and that the activation of $\gamma\delta$ IELs and peripheral $\alpha\beta$ T cells appears to be triggered by different signaling cascades. These features raise the interesting possibility that the lytic activity of $\gamma\delta$ IELs may not be induced exclusively through the antigen receptors. Instead, it could be induced through activating receptors such as those expressed by NK cells. This method of activation would allow $\gamma\delta$ IELs to deal with a broad range of pathological situations very quickly, despite the diversity of $\gamma\delta$ TCR expressed by these cells, and with little or no requirement for new gene expression - an effective way to participate in innate immune responses.

If $\gamma\delta$ IELs are able to function in this fashion, what is the role of the $\gamma\delta$ T cell receptor? One possibility is that it gives these cells an alternative route to induce

cytotoxicity, free from the constraints imposed by the use of activating receptors. As $\gamma\delta$ TCRs recognize intact antigens directly (reviewed in (Chien, Jores et al. 1996)), this ability could allow $\gamma\delta$ IELs to detect infected or diseased cells through the recognition of activation- (Crowley, Fahrer et al. 2000) or stress-induced (Hayday 2000) self antigens. $\gamma\delta$ IELs could also recognize and kill pathogens directly [a herpesvirus-specific $\gamma\delta$ T cell has been described (Sciammas, Kodukula et al. 1997)]. It is also possible that a different set of effector programs is triggered by TCR engagement. The induction of KGF mRNA (Boismenu and Havran 1994) may be such an example.

Although we do not have any evidence for such new gene expression here in the $\gamma\delta$ IELs of *Yersinia*-infected mice, it may be that such genes are below the limits of detection here or are not represented on the arrays. In the case of the MLN CD8⁺ $\alpha\beta$ T cells, where 8% of them are activated in response to the infection, the most clearly up-regulated effector genes are the very abundant ones, which encode components of the cytotoxic granules. Cytokines, which are known to be expressed in activated CD8⁺ $\alpha\beta$ T cells and can detected by sensitive reverse transcription-PCR in this infection system (Kerr 1998), are not detectable above background. In addition, as mentioned above, we do not know what fraction of the $\gamma\delta$ IELs for are responding to *Yersinia* antigens or to antigens induced by the infection.

Our earlier studies showed that mice lacking $\gamma\delta$ T cells (TCR $\delta^{-/-}$) are much less resistant than either normal mice or mice without $\alpha\beta$ T cells (TCR $\beta^{-/-}$) to the early dissemination of *Yersinia*. These findings suggest that $\gamma\delta$ IELs are important and functionally distinct from $\alpha\beta$ IELs in this infection model. We have tested some of the effector genes that are preferentially expressed in $\gamma\delta$ IELs and found that they are similarly expressed in $\alpha\beta$ IELs. Similar observations were made from a more extensive serial analysis of gene expression (SAGE) analysis carried out by A. Hayday and colleagues on $\alpha\beta$ and $\gamma\delta$ IELs isolated from uninfected animals (*A. Hayday, personal communication*). This similarity between $\alpha\beta$ and $\gamma\delta$ IEL gene expression suggests that the differences between $\gamma\delta$ and $\alpha\beta$ IELs in contributing to immune competence are most likely because of their differences in antigen recognition (reviewed in (Chien, Jores et al. 1996)) and the functional consequences of such recognition.

In any event, this approach has allowed us to evaluate many more potential attributes of $\gamma\delta$ IELs than previously possible and has provided important insights into their regulation and function.

Figure Legends

Figure 1.1: γδ IELs express (A) CD69, (B) 2B4, and (C) I-A

IELs were isolated and stained with FITC conjugates of anti-CD69, -2B4, and -I-A (Pharmingen) and phycoerythrin (PE)-conjugated GL3 (anti-δ-TCR) (purified and conjugated to PE according to standard protocols). Cy-chrome-conjugated G235-2356 (anti-2,4,6-trinitrophenol, hamster isotype control) and propidium iodide-positive cells were excluded from analysis.

Supplemental Figure 1.1: Transcripts of γδ T lymphocytes in the intestinal intraepithelial layer (γδ IELs) do not change significantly after *Yersinia* infection but differ from those of mesenteric lymph node (MLN) CD8⁺ T cells and epithelial cells

Normalized gene expression values of genes expressed in $\gamma\delta$ IELs isolated from uninfected animals were compared with those from $\gamma\delta$ IELs isolated from infected animals (a), MLN CD8⁺ $\alpha\beta$ T cells isolated from uninfected animals (b), and epithelial cells (c). In each graph, only genes called present in at least one of the two samples are included. All expression values less than 1 were made equal to 1 before representation on the logarithmic plots.

Table Legends

Table 1.1: Expression levels of genes expressed preferentially by MLN CD8⁺ $\alpha\beta$ T cells (A and B) and of genes upregulated by these cells after *Yersinia* infection (C)

(A) Gene expression values are shown for a partial list of cell surface molecules that are preferentially expressed by MLN CD8⁺ $\alpha\beta$ T cells ($\alpha\beta$ T; averaged from all six samples) together with their averaged expression values in $\gamma\delta$ IELs ($\gamma\delta$ T; averaged from all four samples). Genes called absent are indicated by 'A.'

(B) Gene expression values are shown for signal transduction molecules and transcription factors that are preferentially expressed by MLN CD8⁺ $\alpha\beta$ T cells.

(C) Gene expression values are shown for genes expressed at least two fold higher in cells isolated from *Yersinia*-infected (Inf) as compared to uninfected (Uninf) animals. These genes had to be called present with minimum expression values greater than 30 in at least one of the duplicate samples of $\alpha\beta$ T cells isolated from either *Yersinia*-infected mice or from uninfected mice. A comprehensive list, including accession numbers, can be found in *Supplemental Tables 1, 4* and 6.

Table 1.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs

A partial list of genes identified as being more abundantly-expressed in $\gamma\delta$ IELs than mesenteric lymph node CD8⁺ $\alpha\beta$ T cells by ANOVA. The complete list can be found in *Supplemental Table 5*. Average gene expression values are shown for $\gamma\delta$ IELs ($\gamma\delta$ T), mesenteric CD8⁺ $\alpha\beta$ T cells ($\alpha\beta$ T), and epithelial cells (Epi.). Because the differences in gene-expression between the infected and uninfected samples of either the $\alpha\beta$ or the $\gamma\delta$ T cells were very small, all four $\gamma\delta$ IEL samples were compared against all six CD8⁺ $\alpha\beta$ T cell samples. In all, 235 genes fit the following criteria. These genes (*i*) have a P value <7.87x10⁻⁶ (1,206 / 6,352 genes), (*ii*) are more highly expressed in $\gamma\delta$ than in the $\alpha\beta$ T cells (449 / 1,206 genes), (*iv*) have a difference in median expression of at least 15 between the $\gamma\delta$ and $\alpha\beta$ T cell samples (246 / 344 genes), and (*v*) show at least a 1.5 fold difference in median expression between the $\gamma\delta$ and $\alpha\beta$ T cell samples (235 / 246 genes). To avoid large differences in expression because of negative or very small values in $\alpha\beta$ T cell gene expression, all $\alpha\beta$ T cell expression values <1 were made equal to 1 before calculating the absolute and fold differences in steps (*iv*) and (*v*).

Supplemental Table 1.1: Cell-surface molecules expressed by MLN CD8⁺ αβ T cells

Gene expression values of a partial list of cell surface molecules expressed by MLN CD8⁺ $\alpha\beta$ T cells ($\alpha\beta$ T; averaged from all six samples), together with their expression values in $\gamma\delta$ IELs ($\gamma\delta$ T; averaged from all four samples) are shown. Genes called absent are indicated by 'A.'

Supplemental Table 1.2: Fifteen most abundantly-expressed genes of $\gamma\delta$ IELs (A), MLN CD8⁺ $\alpha\beta$ T cells (B), and epithelial cells (C)

Gene expression values for the 15 most highly-expressed genes in $\gamma\delta$ IELs ($\gamma\delta$ T; averaged from all four samples), MLN CD8⁺ $\alpha\beta$ T cells ($\alpha\beta$ T; averaged from all six samples), and epithelial cells (Epi) are shown.

Supplemental Table 1.3. Genes up- or down-regulated by $\gamma\delta$ IELs after *Yersinia* infection

Gene expression values are shown for genes with 1.4-fold or greater differences in the expression levels identified from $\gamma\delta$ IEL samples isolated from uninfected (Un) and *Yersinia*-infected (Inf) animals. To identify genes differentially expressed between $\gamma\delta$ IELs from infected and uninfected mice, ANOVA tests were carried out by comparing individual probe pairs from the GeneChip arrays. To be considered differentially expressed, genes had to (*i*) have a P value <7.87x10⁻⁶ (60 / 6,352 genes met this criterion), (*ii*) be called "present" or "moderate" in at least one $\gamma\delta$ IEL sample, according to GeneChip 3.0 software (58 / 60 remaining genes), (*iii*) have an absolute difference in median expression of at least 10 between the two populations from infected and uninfected mice (54 / 58 genes), and (*iv*) exhibit at least a 1.4-fold change between infected and uninfected samples. Of the 6,352 genes tested, 37 met these criteria, 6 being increased after infection and 31 being decreased after infection.

Supplemental Table 1.4: Genes upregulated by MLN CD8⁺ $\alpha\beta$ T cells following *Yersinia* infection

Gene expression values are shown for genes expressed at least 2-fold higher in cells isolated from *Yersinia*-infected (Inf) as compared to uninfected (Uninf) animals. The criteria were determined as follows: genes had to be called present with minimum expression values greater than 30 in at least one of the duplicate samples of $\alpha\beta$ T cells isolated from either *Yersinia*-infected mice or from uninfected mice. The gene expression values of the resulting genes were averaged.

Supplemental Table 1.5: Genes expressed preferentially by γδ IELs

A list of genes identified as being more abundantly expressed in $\gamma\delta$ IELs than MLN CD8⁺ $\alpha\beta$ T cells by ANOVA. Average gene expression values are shown for $\gamma\delta$ IELs ($\gamma\delta$ T), MLN CD8⁺ $\alpha\beta$ T cells ($\alpha\beta$ T), and epithelial cells (Epi). Because differences in gene-expression between the infected and uninfected samples of the $\alpha\beta$ and $\gamma\delta$ T cells were small, all four $\gamma\delta$ IEL samples were compared against all six CD8⁺ $\alpha\beta$ T cell samples by ANOVA tests. In all, 235 genes fit the following criteria. These genes (*i*) have a P value <7.87x10⁻⁶ (1,206 / 6,352 genes), (*ii*) are more highly expressed in $\gamma\delta$ than in $\alpha\beta$ T cells (449 / 1,206 genes), (*iii*) are called "present" or "moderate" in at least two $\gamma\delta$ IEL samples (344 / 449 genes), (*iv*) have a difference in median expression of at least 15 between the $\gamma\delta$ and $\alpha\beta$ T cell samples (246 / 344 genes), and (*v*) show at least a 1.5-fold difference in median expression between the $\gamma\delta$ and $\alpha\beta$ T cell samples (235 / 246 genes). To avoid large differences in expression because of negative or very small values in $\alpha\beta$ T cell gene expression, all $\alpha\beta$ T cell expression values <1 were made equal to 1 before calculating the absolute and fold differences in steps (*iv*) and (*v*).

Supplemental Table 1.6: Signal transduction and transcription factors expressed preferentially by MLN CD8⁺ $\alpha\beta$ T cells

Gene expression values are shown for $\gamma\delta$ IELs ($\gamma\delta$ T; averaged from all four samples) and MLN CD8⁺ $\alpha\beta$ T cells ($\alpha\beta$ T; averaged from all six samples).

Acknowledgements

This work was supported by grants from the National Institutes of Health (Y.h.C.) and Howard Hughes Medical Institute (M.M.D.). A.M.F. was supported by a Stanford Dean's fellowship and a Katherine McCormick fellowship. We thank Mamatha Mahatir and Suzanne Ybarra for expert technical advice and Drs. Richard Glynne and Jen-Tsan (Ashley) Chi for helpful discussions.

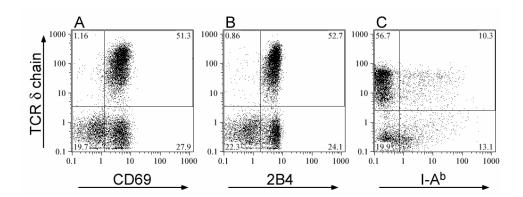


Figure 1.1: $\gamma\delta$ IELs express (A) CD69, (B) 2B4, and (C) I-A

Supplemental Figure 1.1: Transcripts of $\gamma\delta$ T lymphocytes in the intestinal intraepithelial layer ($\gamma\delta$ IELs) do not change significantly after *Yersinia* infection but differ from those of mesenteric lymph node (MLN) CD8⁺ T cells and epithelial cells

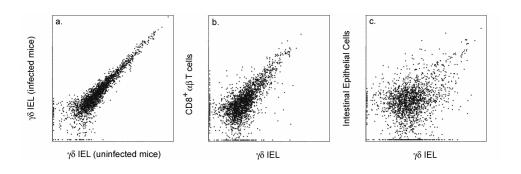


Table 1.1: Expression levels of genes expressed preferentially by MLN $CD8^+ \alpha\beta$ T cells (A and B) and of genes upregulated by these cells after *Yersinia* infection (C)

A. Cell	-surface molecules
αβ Τ	γδ T Description
Cytokir	ne/Chemokine/Similar
367	A CCR7
179	A IL-7 Receptor
115	11 CXCR4
72	A Thromboxane A2 Receptor
64	A IL-6 Receptor
54	A IL-17 Receptor
-	Surface Molecules
1653	303 pB7
822	64 Thy-1
454	A Ly-6C
298	A CD2
264	A L-Selectin
226	16 CD97
224	26 Lectin L-14
220	A Ly-6E
164	A Semaphorin B
148	A CD5
113	A CD6
84	A CD97
63	A LFA-1
60	12 CD47
50	A ICAM-2
C Brot	eventially expressed Signal and Transprintion (
αβ Τ	erentially expressed Signal and Transcription 1 γδ T Description
	transduction
Signal	lansuucion

9792 1944 Receptor for Activated C Kinase

15 Jak1, homolog

38 GTPase activating protein GapIII

A Diacylglycerol Kinase, alpha

A Diacylglycerol Kinase, alpha

A Protein Kinase C, theta

A Kruppel-like factor LKLF

27 RFLAT-1, homolog

A Kruppel-like factor 3

A Dual-specificity phosphatase PAC-1

199

134

117

111

83

51

554

407

148

144

140

73 60

Transcription factors

18 SATB1

12 TCF-1

A LEF-1

A HMG-I(Y)

B. Upregulated following Yersinia infection Uninf Inf Description Effector Functions 779 RANTES 139 173 Granzyme A 87 Granzyme B 27 71 Flt3 ligand Activation, Proliferation, Cell Cycle 325 Nucleolin 153 303 Ly-6E 56 114 Proliferation-associated Protein 1 (p38-2G4) 64 56 108 CDC47 51 99 Pim-2 14 80 CDKN2A/INK4a/MTS1 22 73 Stathmin 55 Gamma-Glutamyl transpeptidase (Ggtp) 21 21 52 Mdm2 Chromosomal Structure 144 431 HMG2 166 306 HMG14 141 HMG17 55 Protein Synthesis/Degradation/Targeting 126 214 Proteasome sub., alpha type 2 190 Cathepsin S 115 86 169 Cytosolic Chaperone Containing TCP-1, theta 59 158 Cathepsin D 99 Splicing Factor Srp20/X16 54 54 91 Valosin Containing Protein (VCP) factors 31 74 Ubiquitin-conjugating Enzyme E2H (E20-20K) 22 60 FXR1 17 52 U2-snRNP b" (pRNP31), homolog 51 Ac39/Physophilin А Surface Molecules 301 Lectin L-14 68 255 CD48 128 36 85 Galectin-3 (Mac-2) 76 Integrin beta-1 subunit 43 Signal Transduction and Transcription Factors 50 98 NF-YB 34 81 Maid 41 75 Protein Phosphatase 2A, cat.sub.alpha, hmlg. 36 73 Protein Phosphatase 2A, B'alpha3 reg.sub. 28 55 Protein Phosphatase 2A, cat sub beta, hmlg. 75 FK506-binding Protein (FKBP-12) 39

- 33 74 MyD88
- 39 68 NFATx/NFAT4/NFATc3

Table 1.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs

*8 T ~~	ΩT	Epi. Description	~8 T	ar T	Eni	Description
		se mediators	γδ T Signal			Description
		nes/Chemokines	1020	A		Regulator of G-protein signalling 1 (RGS1)
3065	566	A RANTES	620	101		MAPK phosphatase 1 (3CH134)
215	49	A Lymphotactin	337	195		Stat3/APRF
58	25	A TIS7/PC4, homolog	271	. 94		Pim-1
39	A	A MIP-1-alpha	185	41	17	
38	A	A MIP-1-beta	155	62		SH2 containing inositol-5-phosphatase (Ship)
36	A	A Eta-1	123	77		ASM-like phosphodiesterase 3a
30	A	A Transforming Growth Factor, beta 3	122	14		PI-3-kinase, regulatory subunit p85alpha
22	8	A TIS7/PC4/IFN-related developmental regulator 1	22	А		PI-3-kinase, catalytic subunit, beta, homolog
		kic Proteins/Related	109	55		Rb2/p130
2630	Í116	19 Granzyme A	36	А		Rb1/p105Rb
2117	59	8 Granzýme B	105	36		TNF receptor associated factor 5 (Traf5)
583	258	22 Serglycin	98	59		Serine/threonine kinase (MAP4K1, homolog)
275	A	A Fas Ligand	95	28		cAMP-dependent protein kinase, beta-cat. sub.
222	8	153 Cryptdin	39	27		cAMP-dependent protein kinase, alpha subunit
E	nzym	es, Inflammation	88	A	A	cAMP-responsive element modulator (CREM)
174	97	19 Leukotriene A-4 Hydrolase	86	50	A	MAP kinase kinase kinase 1 (Mekk1)
73	35	40 p47phox	86	41	A	Guanine Nucleotide Binding Protein, alpha 13
Choleste	erol/Lij	pid biosynthesis and metabolism	66	26	91	Mitogen Activated Protein kinase (erk-1)
110	A	A Apolipoprotein E	61	27	51	Early Growth Response 1 (Egr1/zif/268)
66	27	A Farnesyl diphosphate synthase, homolog	61	17	A	Cytokine-inducible SH2-containing protein (CIS)
65	16	A Squalene Synthase	57	A	A	Protein Tyrosine phosphatase STEP61
61	11	A Plasma Phospholipid Binding Protein	56	14	A	MyD118
54	29	A Acetyl CoA Dehydrogenase, long-chain	23	A	A	Ddit1/Gadd45
51	A	A LDL Receptor	56	A	A	c-Fes (tyrosine kinase)
50	A	A Squalene Epoxidase	54	26	A	Lithium-sensitive myo-inositol monop'tase A1
44	23	A Stearoyl-Coenzyme A desaturase 2	52	A	A	Caspase-3/CPP32
38	A	A Adipose Differentiation Related Protein	52	25	A	Fyn proto-oncogene (Fyn/p59fyn)
Intestina	l func	tion and homeostasis	48	25	A	Protein Tyrosine kinase, tec type l
289	A	A Carbonic Anhydrase isozyme II	38	17	A	G protein gamma-2 subunit, homolog
226	A	A Fibrinogen-like Protein	35	A	45	Phospholipase C beta3
152	8	A Spi2/EB1 Proteinase Inhibitor	34	A	27	Lyn-B protein tyrosine kinase
116	A	A Furin	Transc			
116	59	A Cystatin 7 (Cst7/leukocystatin)	1251	353		ATF-4/CREB2
91	A	A p6-5 (preproelastase, homolog)	478	167		ld-2
21	A	A Platelet activating factor acetylhydrolase, 1b, a1	59	11	188	
45	A	91 Monocyte/neutrophil elastase inhibitor, homolog	454	233		Jun-B
108	A	111 Serine protease inhibitor, Kazal type 3 (Spink3)	299	171		H3 histone, family 3B (H3f3b)
165	14	150 Alcohol dehydrogenase class (ADH-A-2)	298	125		c-Fos
104	A		281	80		Max/Myn (Myc-associated factor X)
		nolecules	157	49		Nur77/N10/NGFI-B
		ssociated	152	99		Butyrate Response Factor 1/TIS11
726	394	A CD3-gamma	92	26		A20/TNF Induced Protein 3
597	16	17 Fc-epsilon-RI gamma subunit	86	14		TG Interacting Factor (TGIF)
1		ivating/Inhibitory Receptors	76 70	24		Gfi-1 Dd#2/Chan 10/Cadd152
182	A	A NK Cell Receptor 2B4	70	24		Ddit3/Chop-10/Gadd153
138	A		68	33		General transcription factor IIB (GTF2B), hmlg.
87	A	A Ly-49E-GE (Kira5)	64 50	31		MafK Kruppel like factor 4 (aut) (Klf4/Ezf/Zie)
58 55	A A	A NK Cell Receptor gp49B	59 58	A		Kruppel-like factor 4 (gut) (Klf4/Ezf/Zie) PEBP2a1/PEBP2alphaA/CBFA1
49		13 PD-1/Programmed Cell Death 1 A CTLA-4	57	A 30		•
49 38	A		51	30 15		TSC-22-like protein, homolog
	A	A NK Cell Receptor NKR-P1A ne/Chemokine/Similar	51	21		X box binding protein-1 (Xbp1) p45 NF-E2 related factor 2
262	46 yilli	A Tumor Necrosis Factor Receptor 2	49			Son of Sevenless 2
125	40	100 Tumor Necrosis Factor Receptor 2	49	A		C/EBP beta
225	49 91	30 Interferon gamma Receptor	40 48	A		Interferon Concensus Sequence Binding Protein
225	70	A Interleukin 2 Receptor, beta chain	40 47	A		Arylhydrocarbon Receptor
209	70 A	A Interleukin 2 Receptor, beta 1	47 44	A		LRG-21
40	A	A Interleukin 12 Receptor, beta 1	44 36	A		TSC-22
40 62	A	A Prostaglandin E Receptor, EP4 subtype	35	A 18		c-Jun
02		A HOStagranum E Neceptor, EF4 Subtype	33			Blimp1
			55	17		

	- -		Description
	γδ I ssociat		Description
10R/a		еа M26417	IT coll recenter beta variable 8.2
			T-cell receptor beta, variable 8.3
55		X06305	T-cell receptor alpha, variable 8
		mokine/Simila	
367		L31580	chemokine (C-C motif) receptor 7
179		M29697	interleukin 7 receptor
115		X99581	chemokine (C-X-C motif) receptor 4
72		D10849	thromboxane A2 receptor
64	A	X53802	interleukin 6 receptor, alpha
54	A	U31993	interleukin 17 receptor
Other	Surface	Molecules	
1653	303	M55561	CD52 antigen
822	64	M12379	thymus cell antigen 1, theta
454	A	D86232	lymphocyte antigen 6 complex, locus C
298	A	Y00023	CD2 antigen
264	A	M2 532 4	selectin, lymphocyte
226	16	W20922	CD97 antigen
224	26	W13002	lectin, galactose binding, soluble 1
220	A	X04653	lymphocyte antigen 6 complex, locus A
164	A	X85991	semaphorin 4A
148	А	M15177	CD5 antigen
113	А	U37543	CD6 antigen
84	А	AA118715	CD97 antigen
63	А	M60778	integrin alpha L
60		AA072961	CD47 antigen
50		AA028405	intercellular adhesion molecule 2
	/ (I	

Supplemental Table 1.2: Fifteen most abundantly-expressed genes of $\gamma\delta$ IELs (A), MLN $CD8^+ \alpha\beta$ T cells (B), and epithelial cells (C)

γδ IELs			
γδ Τ	αβ Τ	Epi.	Description
6853	15236	3843	Trt (21 kDa)
3795	5230	1547	Ubiquitin
3065	566	A	RANTES
2643	4612	1258	Beta actin
2630	116	19	Granzyme A
2331	3213	369	Prothymosin beta 4
2117	59	8	Granzyme B
1944	9792	192	Gnb2-rs1
1823	2093	726	Ubiquitin C
1321	21	A	TCR gamma chain
1310	2349	100	Ribosomal Protein S16
1290	170	A	CD7
1251	353	271	ATF4
1234	1117	272	Gamma actin
1207	21	12	RGS1

Epithelial Cells

Epithoni		
γδ Τ	αβ Τ	Epi. Description
6853	15236	3843 Trt (21 kDa)
816	A	2670 FABP2, intestinal
79	A	1567 Trefoil factor 3, intestinal
3795	5230	1547 Ubiquitin
2358	5022	1259 Beta actin
109	A	842 CD13/aminopeptidase N
336	372	835 Prothymosin beta 4
153	A	810 FABP1, liver
199	A	749 Apolipoprotein A-I
1823	2093	726 Ubiquitin C
71	A	599 Cytokeratin EndoA
396	427	592 Thioredoxin
493	930	590 ATP synthase, F1, beta
383	128	564 Selenoprotein P
89	2	526 Apolipoprotein A-IV

	-		
γδ Τ	αβ Τ	Epi.	Description
6853	15236	3843	Trt (21 kDa)
1944	9792	192	Gnb2-rs1
1177	6645	133	Ribosomal protein PO
3795	5230	1547	Ubiquitin
2358	5022	1259	Beta actin
1044	4183	108	Ribosomal protein L5
2331	3213	369	Prothymosin beta 4
980	2954	70	Repeat family 3 gene
715	2932	81	Ribosomal protein S5
1115	2777	66	Ribosomal protein L27a
535	2771	32	Ribosomal protein L36
666	2428	115	Ribosomal protein fau
736	2401	48	Ribosomal protein L6
1310	2349	100	Ribosomal protein S16
941	2317	45	Ribosomal protein L3

MLN CD8⁺ αβ T cells

Supplemental Table 1.3: Genes up- or down-regulated by $\gamma\delta$ IELs after *Yersinia* infection

Genes Upregulated After Yersinia Infection

Uninf.	Inf.	Accession	Description
5441	8264	X06407	tumor protein, translationally-controlled 1
445	625	D00472	cofilin 1, non-muscle
111	156	U27340	prosaposin
62	113	AA145371	interferon stimulated gene 12
65	108	L25885	beta-1,4-N-acetylgalactosaminyltransferase
34	48	W40735	EH-domain containing 1

Genes Downregulated After Yersinia Infection

Genes	Down	regulated Af	ter Yersinia Infection
Uninf.	inf.		Description
972	590	U12236	integrin, alpha E, epithelial-associated
614	337	U58494	Intracistemal A-particle mRNA (5' to IL-3 gene)
451	281	U58888	osteoclast stimulating factor 1
239	137	AA114811	ATP synthase gamma 1 (Atp5c1)
238	160	AA008136	actinin alpha 4
212	139	AA123463	SET translocation
211	130	U09351	signal transducer and activator of transcription 4
203	86	W13875	RIKEN cDNA 2900073G15 gene
181	136	D37837	lymphocyte cytosolic protein 1
172	72	U50413	PI3-kinase, reg. sub., polypeptide 1 (p85 alpha)
164	103	W29730	protein phosphatase 1, cat. sub., alpha isoform
161	86	U10484	lymphoid-restricted membrane protein
135	50	W35962	suppressor of Ty 4 homolog
134	75	W83337	glutathione peroxidase 4
124	53	M60285	CAMP responsive element modulator
121	79	AA152884	DnaJ (Hsp40) homolog, subfamily A, member 1
119	76	AA168184	core promoter element binding protein
111	61	X89749	TG interacting factor
110	57	AA003990	splicing factor, arginine/serine-rich 7
92	57	U41736	ancient ubiquitous protein
75	36	D87990	UDP-galactose translocator 2
75	42	W29669	interferon-related developmental regulator 1
72	32	U54803	caspase 3
63	34	X05719	cytotoxic T-lymphocyte-associated protein 4
57	28	W46019	14-3-3 theta
48	16	AA162093	DEAH (Asp-Glu-Ala-His) box polypeptide 15
46	33	X59421	friend leukemia integration 1
45		AA105582	CD53 antigen
39		AA008095	general transcription factor II I
34		D83585	proteasome (prosome, macropain) sub., beta 7
32	9	D87691	Eukaryotic translation termination factor 1

Supplemental Table 1.4: Genes upregulated by MLN $CD8^+ \alpha\beta$ T cells following *Yersinia* infection

Uninf	Inf. Accession	Description	Uninf	Inf. Accession	Description
	r Functions		Surface	Molecules	
139	779 U02298	chemokine (C-C motif) ligand 5	68	301 w13002	lectin, galactose binding, soluble 1
А	173 M13226	granzyme A	128	255 x17 501	CD48 antigen
A	87 x04072	granzyme B	36	85 x16834	lectin, galactose binding, soluble 3
27	71 U2 98 7 5	FMS-like tyrosine kinase 3 ligand	43	76 Y00769	integrin beta 1
Activati	ion, Proliferation, C		17	40 x69902	integrin alpha 6
153	325 X 0 7 6 9 9	nucleolin	Signal T	ransduction and	Transcription Factors
56	303 X 0 4 6 5 3	lymphocyte antigen 6 complex, locus A	50	98 X55316	nuclear transcription factor-Y beta
64	114 U43918	proliferation-associated 2G4	34	81 U50 734	cyclin D-type binding-protein 1
56	108 D26091	minichromosome maintenance deficient 7	41	75 AA116706	protein phosphatase 2a, cat. sub., alpha
51	99 L 4 1 4 9 5	proviral integration site 2	39	75 x60203	FK506 binding protein 1a
14	80 D00208	S100 calcium binding protein A4	33	74 x 51 3 9 7	myeloid differentiation primary response gene 88
22	73 AA117100	stathmin	36	73 U37353	protein phosphatase 2, reg. sub. B, gamma
21	55 U30509	gamma-glutamyltransferase 1	39	68 U28807	nuclear factor of activated T-cells, cyt. 3
21	52 x 58876	transformed mouse 3T3 cell double minute 2	28	55 w82 881	protein phosphatase 2a, cat. sub., beta
26	48 L16462	B-cell leukemia/lymphoma 2 related protein A1a	18	39 x80937	RalA binding protein 1
18	40 AA120142	replication factor C (activator 1) 2	17	37 AA008566	peptidylprolyl isomerase E
A	38 X 82 7 8 6	antigen identified by monoclonal antibody Ki 67	21	36 x 7 1 3 2 7	metal response element binding TF 1
	osomal Structure	· · ·	15	32 L28117	nuclear factor kappaB p50
144	431 z 46757	high mobility group protein 2	Other		· · ·
55	141 X12944	high mobility group protein 17	226	448 AA002621	nucleoside diphosphate kinase B
A	46 X 5668 3	chromobox homolog 3	173	388 W34296	split hand/foot deleted gene 1
166	306 X 53 4 7 6	high mobility group protein 14	146	303 D38379	pyruvate kinase, muscle
Protein	Synthesis/Degrad		131	267 AA027404	ATP ase, Na+/K+ transporting, beta 3
126	214 x 70303	proteasome (prosome, macropain) sub., alpha 2	74	159 AA0 02 9 7 9	ATP ase, Na+/K+ transporting, beta 3
115	190 AA146437	cathepsin S	53	103 U05809	transketolase
86	169 z 37164	chaperonin subunit 8 (theta)	35	98 D10024	annexin A2
59	158 X 52 8 8 6	cathepsin D	42	98 x 5 7 0 2 4	glutamate deh ydrogen ase 1
54	99 x 5382 4	splicing factor, arginine/serine-rich 3	40	93 W99875	M2-type Pyruvate Kinase, homolog
54	91 z 1 4 0 4 4	valosin containing protein	36	73 U14172	eukaryotic translation initiation factor 3, sub. 10
31	74 U19854	ubiquitin-conjugating enzyme E2H	25	63 Z48043	coagulation factor II (thrombin) receptor-like 1
22	60 X 90875	fragile X mental retardation gene 1	29	60 L32 974	IFN-induced prot. w. tetratricopeptide repeats 3
17	52 AA146248	U2 small nuclear ribonucleoprotein B	29	58 D88793	cysteine and glycine-rich protein 1
A	51 U21549	ATPase, H+transporting, V0 subunit D iso. 1	25	51 z11911	glucose-6-phosphate dehydrogenase X-linked
26	47 AA002605	KDEL ER protein retention receptor 1	22	42 U19119	interferon inducible protein 1
22	45 x 60831	upstream binding transcr. fact., RNA pol. I	A	39 x 7 8 8 7 4	chloride channel 3
A	42 AA003841	splicing factor 3a, subunit 3	14	34 x97650	myosin IF
12	42 X 56602	interferon, alpha-inducible protein	Į	ı	· ·
А		hexosaminidase A			
	I ·	1			

γδŢ	αβΙ	Eni	Accession	Description	γδ Τ	αβ Τ	Eni	Accession	Description
			ediators					nd homeosta	
			hemokines		289	A		K00811	carbonic anhydrase 2
3065	566	A	UO2298	chemokine (C-C motif) ligand 5	226	A	A	M16238	fibrinogen-like protein 2
215	49		D43769	chemokine (C motif) ligand 1	152	8		M64085	serine proteinase inhibitor, clade A, 3G
58	25		W29669	interferon-related developmental regulator 1	116	A		L26489	furin
39	A		M73061	chemokine (C-C motif) ligand 3	116	59		AA089339	cystatin F (leukocystatin)
38	A		M23503	chemokine (C-C motif) ligand 4	91	A		M2 7347	elastase 1, pancreatic
36	A		X16151	secreted phosphoprotein 1	21	A		U57746	PAF acetylhydrolase, 1b, a1
30	A		M32745	transforming growth factor, beta 3	23	A		L19932	transforming growth factor, beta induced
22	8 Cutata		J00424	interferon-related developmental regulator 1	45 108	A A		AA145127 AA106468	serine proteinase inhibitor, clade B, 1a
2630	116		p teins/Relate M13226	granzyme A	165	14		AA106468 M22679	serine protease inhibitor, Kazal type 3 alcohol dehydrogenase 1 (class I)
2117	59		X04072	granzyme B	100	A		L15193	meprin 1 beta
583	258		X16133	proteoglycan 1, secretory granule	79	A		D38410	trefoil factor 3, intestinal
275	A		U06948	tumor necrosis factor (ligand) superfamily, 6		urface			
222	8		M33225	defensin related cryptdin peptide 1			issocia		
25	A	107	M33226	defensin related sequence cryptdin peptide	1321	21	А	M12836	T cell receptor gamma chain, constant 2
22	A	A	X58861	complement component 1, q, alpha	740	11	A	L36135	T cell receptor delta chain, constant
	Enzym	es, Im	lammation		71	18	A	AA118701	T cell receptor delta chain, variable
174	97	19	M63848	leukotriene A4 hydrolase	62	A	A	AA119287	T cell receptor delta chain, variable
73	35		L11455	neutrophil cytosolic factor 1	726	394		Y00635	CD3 antigen, gamma polypeptide
				nd metabolism	597	16		W41745	Fc receptor, IgE, high affinity I, gamma
110	A		D00466	apolipoprotein E				g/Inhibitory R	
66	27		AA036251	farnesyl diphosphate synthetase	182	A		L19057	CD244 natural killer cell receptor 2B4
65	16		D29016	farnesyl diphosphate farnesyl transferase 1	138	A		X98113	lymphocyte-activation gene 3
61	11	A	U37226	phospholipid transfer protein	87	A		U10091	killer cell lectin-like receptor, subfamily A, 5
54	29	A	U21489	acetyl-Coenzyme A dehydrogenase	58	A		UO 52 6 5	leukocyte Ig-like receptor, subfamily B, 4
51	A		X64414	low density lipoprotein receptor	55	A		X67914	programmed cell death 1
50	A		D42048	squalene epoxidase	49	A		X05719	cytotoxic T-lymphocyte-associated protein 4
44	23		M26270	stearoyl-Coenzyme A desaturase 2	38	А		M77753	killer cell lectin-like receptor subfamily B, 1A
38	A		M93275	adipose differentiation related protein				emokine/Simi	
22	A		AA014996	apolipoprotein B	262	46		M59378	TNF receptor beta chain
26	A		M13366	glycerol-3-phosphate dehydrogenase 1	125	49		X57796	TNF receptor alpha chain
35	A		AA016485	sulfotransferase family, cytosolic, 2B, 1	225	91 70		J05265	interferon gamma receptor 1
38	A		W17412	apolipoprotein C-III	209	70		M2 80 52	interleukin 2 receptor, beta chain
44	A		U00938	fatty acid binding protein 6, ileal (gastrotropin)	31	A		U2 3922	interleukin 12 receptor, beta 1
51 89	A A		Z22216	apolipoprotein C-II	40 62	A			chemokine (C-C motif) receptor-like 2
101	39		M64250 D29639	apolipoprotein A-IV	02	A		D13458 Te Molecules	prostaglandin E receptor 4 (subtype EP4)
153	39 A		D29639 AA087320	L-3-hydroxyacyl-CoA dehydrogenase fatty acid binding protein 1, liver	1290	170		D31956	CD7 antigen
199	A		AAU87320 X64263	apolipoprotein A-I	781	152		U12236	integrin, alpha E, epithelial-associated
816	A		A64265 M65034	fatty acid binding protein 2, intestinal	335	111		U12236 U25708	CD98 antigen
Enzym				ratty acid birding protein 2, intestinal	268	69		X16834	lectin, galactose binding, soluble 3
107	48		x53333	triosephosphate isomerase 1	177	A		M76124	tumor-associated calcium signal trans ducer 1
89	34		X13752	aminolevulinate, delta-, dehydratase	166	A		Y00864	kitoncogene
80	24		X64837	ornithine aminotransferase	109	A		U77083	CD13
66	A		X63023	cytochrome P450, fam. 3, subfam. a, 13	96	50		L22143	insulin-like growth factor 2 receptor
26	6		D50834	cytochrome P450, fam. 4, subfam. b, 1	85	27		X55184	ATPase, H+ transp., lysosomal V0 sub. a 2
64	A		U16818	UDP glycosyltransferase 1 family, A6	81	16		M33581	ATP-binding cassette, sub-family B, 1A
59	25		Z14986	S-adenosylmethionine decarboxylase 1	79	35		U39827	G-protein coupled receptor 65
45	A		Z13968	creatine kinase, mitochondrial 1, ubiquitous	74	35		W08454	transmembrane 4 superfamily member 8
45	A		M74570	aldehyde dehydrogenase fam. 1, subfam.A1	65	A		V01527	histocompatibility 2, class II antigen A, beta 1
36	A	A	U60987	glycerol phosphate dehydrogenase 2, mito.	64	A		J04634	lymphocyte antigen 64
27	A		U27014	sorbitol dehydrogenase 1	62	A		X60961	cadherin 1
138	75		W99875	pyruvate kinase 3, homolog	61	33		U07890	flotillin 2
45	A		AA023491	amiloride binding protein 1	47	A		M29961	glutamyl aminopeptidase
35	A		AA109909	amiloride binding protein 1	38	A		AA008624	integrin alpha-1, homolog
27	A		J05663	aldo-keto reductase family 1, member B7	27	4		AA170355	integrin alpha X
			le metabolisr		23			L11332	CD38 antigen
93	32		M10319	adenosine deaminase				Related	
46	22		X56548	purine-nucleoside phosphorylase	278	175		D78645	heat shock 70kD protein 5
65	24		X75129	xanthine dehydrogenase	151	85		J05185	prolyl 4-hydroxylase, beta polypeptide
44	13		L12059	CD73 5' nucleotidase, ecto	107	21		AA144887	cathepsin C
.1	.1				72	24		U51014	peptidase 4
					66	35		AA124985	insulin degrading enzyme
					42	A		X92523	calpain 3
					33	13		X59379	a myloid beta (A4) precursor protein
					63	34		U10119	vacuolar protein sorting 4b
					56	35		D87990	UDP-galactose translocator 2
					54	A	А	M85153	glycoprotein galactosyltransferase alpha 1, 3
					22	A	A	X93999	sialyltransferase 7B
- ·		0.01	37.1	1 1 00 1 110				0 P	

Supplemental Table 1.5: Genes expressed preferentially by γδ IELs (page 1 of 2)

 22
 A
 A
 X93999
 [sialyltransferase 7B]

 Copyright 2001 National Academy of Sciences, U.S.A.
 Reproduced from Proceedings of the National

 Academy of Sciences of the United States of America; 2001, vol. 98, no. 18, pp 10216 – 10266

νδ Τ	αβ Τ	Epi.	Accession	Description	γδ Τ	αβ Τ	Epi.	Accession	Description
Transc					Cytosk				
1251	353	271	M94087	activating transcription factor 4	158	77	245	D10024	annexin A2
478	167	A	M69293	inhibitor of DNA binding 2	71	A	599	X12789	keratin complex 2, basic, gene 8
59	11	188	M31885	inhibitor of DNA binding 1	59	27	A	X97650	myosin IF
454	233		J03236	Jun-B oncogene	56	8		X59990	catenin alpha 1
299	171		X13605	H3 histone, family 3B	55	38		AA032596	kinesin 2
298	125		V00727	FBJ osteosarcoma oncogene	50	A		M98454	villin 1
281	80		M63903	Max protein	41	A		U04354	scinderin
27	A		X83106	Max dimerization protein	39	A		X61452	septin 4
157 152	49 99	A	X16995 M58566	nuclear receptor subfamily 4, group A, 1 zinc finger protein 36, C3H type-like 1	29 RNA-r	A	33	U49739	myosin VI
92	26	A	M38366 U19463	TNF alpha-induced protein 3	213	111	32	M38381	CDC-like kinase 1
86	14	A	X89749	TG interacting factor	186	141	247		18SRNAMur-3
76	24	A	U78312	growth factor independent 1	153	93		AA008245	poly(A)-binding protein, cytopl. pseudo.
70	24		X67083	DNA-damage inducible transcript 3	103	53		D78135	cold inducible RNA binding protein
68	33	A	AA023287	general transcription factor IIB	82	46	A	M12130	RNA polymerase II 1
64	31	A	D42124	nuclear factor, erythroid derived 2, ubiquitous	82	21	25	W90866	elongation factor 2 (ef-2), homolog
59	A	104	U70662	Kruppel-like factor 4 (gut)	71	30	A	U75680	stem-loop binding protein
58	A	A	D14636	runt related transcription factor 2	47	32	A	D83033	zinc finger, matrin-like
57	30	A	AA015076	TSC22-related inducible leucine zipper 2	40	15		AA125097	ribonucleoprotein H3, homolog
51	15	A	AA016424	X-box binding protein 1	40	27	A	W82026	RNA binding motif, single strand. interact. 2
51	21		U20532	nuclear factor, erythroid derived 2, like 2	Other	70		1	
49	A	A		son of sevenless homolog 2	647	79		M6 42 92	B-cell translocation gene 2, anti-proliferative
48	A	A		CCAAT/enhancer binding protein, beta	74	40		Z72000	B-cell translocation gene 3
48 47	A A	A	M32489 D38417	IFN consensus sequence binding protein 1 aryl-hydrocarbon receptor	383 275	128		X99807 D13509	selenoprotein P, plasma, 1
47	A		U19118	activating transcription factor 3	215	A 92		U13509 U37351	pancreatitis-associated protein cyclin L2
36	A		X62940	TGF beta 1 induced transcript 4	213	52 59		X61433	ATPase, Na +/K+ transporting, beta 1
35	18		J04115	Jun oncogene	124	41		U10484	lymphoid-restricted membrane protein
33	A	A	U08185	B lymphocyte induced maturation protein	120	A		D14010	regenerating islet-derived 1
20	A		U16322	transcription factor 4	97	A		AA123026	regenerating islet-derived 3 gamma
19	A		X76654	nuclear receptor subfamily 2, grp. F, 6	101	A		AA064246	solute carrier family 5, member 1
Signal				······································	36	A		W18827	solute carrier family 5, member 1
1207	21		AA154742	regulator of G-protein signaling 1	128	47	A	L04961	inactive X specific transcripts
1020	A	A	AA138863	regulator of G-protein signaling 1	119	51	43	М96823	nucleobindin 1
620	101	77	X61940	dual specificity phosphatase 1	95	41	A	U42386	fibroblast growth factor inducible 14
479	308	27	M90388	protein tyrosine phosphatase, non-receptor 8	78	40	100	U53591	Fau-ps3 retropseudogene
337	195		U08378	stat3	72	11		M55154	transglutaminase 2, C polypeptide
271	94		M13945	proviral integration site 1	68	26		D00812	replication protein A2
185	41		L16462	B-cell leukemia/lymphoma 2 related prot. A1a	53	29		AA114648	T-cell, immune regulator 1
155	62	A	U52044	inositol polyphosphate-5-phosphatase D	44	21		D13003	reticulocalbin 1
123	77	A	Y08135	sphingomyelin P'diesterase, acid-like 3A	41	14		W40735	EH-domain containing 1
122 22	14 A	A	U50413 AA111021	PI3-kinase, regulatory subunit, 1 PI3-kinase, catalytic subunit, beta	37 35	A 19		U68064 X17459	ceroid lipofuscinosis, neuronal 3, juvenile
109	55		U36799	retinoblastoma-like 2	27	A		M32032	RBP-J kappa selenium binding protein 1
36	A		M26391	retinoblastoma 1	27	A		M32032 M32240	peripheral myelin protein
105	36		D78141	TNF receptor-associated factor 5	24	A		U00478	deoxyribonuclease l
98	59	A		hematopoietic progenitor kinase 1	32	A		M34897	ecotropic viral integration site 2a
95	28		X61434	protein kinase, cAMP dep., catalytic, beta	29	A		M11024	Endogenous mammary tumor virus (MMTV)
39	27	A	M19960	protein kinase, cAMP dep., catalytic, alpha	82	41	А	AA154451	replication protein A1
88	A	А	M60285	cAMP responsive element modulator	•			•	
86	50	A	L13103	MEK kinase					
86	41	A	M63660	guanine nucleotide binding protein, alpha 13					
66	26	91	Z14249	mitogen activated kinase 3					
61	27		M22326	early growth response 1					
61	17		D31943	cytokine inducible SH2-containing protein					
57	A	A		protein tyrosine P'tase, non-receptor 5					
56	14		X54149	gadd45 beta					
23	A		L28177	gadd45 alpha falina aaraama anaa gana					
56 54	A		X12616	feline sarcoma oncogene					
54 52	26 A	A	AA124192 U54803	inositol (myo)-1(or 4)-monophosphatase 1					
52 52	25		U54803 U70324	caspase 3 Fyn proto-oncogene					
48	25		X55663	cytoplasmic tyrosine kinase, Dscr28C related					
38	17		W83658	G protein gamma 2					
35	A		U43144	phospholipase C, beta 3					
34	A		M57696	Lyn protein tyrosine kinase					
24	A		W82116	death-associated kinase 2					
20	A	A	L20899	Ras guanine release factor beta					

Supplemental Table 1.5: Genes expressed preferentially by $\gamma\delta$ IELs (page 2 of 2)

Supplemental Table 1.6: Signal transduction and transcription factors expressed preferentially by MLN $CD8^+ \alpha\beta$ T cells

γδ Τ	αβ Τ	Accession	Description
Signal		luction	
1944	9792	X75313	G protein, beta polypeptide 2-like 1
38	199	U20238	RAS p21 protein activator 3
A	134	AA066032	diacylglycerol kinase, alpha
15	117	AA066354	janus kinase 1
A	111	AA110453	diacylglycerol kinase, alpha
A	83	L11330	dual specificity phosphatase 2
A	51	D11091	protein kinase C, theta
Transo	cription	factors	
A	554	U25096	Kruppel-like factor 2 (lung)
18	407	U0 52 52	special AT-rich sequence binding protein 1
27	148	AA015486	Kruppel-like factor 13
12	144	X61385	transcription factor 7, T-cell specific
A	140	D16503	lymphoid enhancer binding factor 1
A	73	U36340	Kruppel-like factor 3 (basic)
A	60	J04179	high mobility group AT-hook 1

Chapter 2: Antigen-Specific γδ Intraepithelial Lymphocyte Responses

Introduction

The results from Chapter 1 implied, first, that $\gamma\delta$ IELs constitutively express genes that are normally expressed by activated T cells, such as those coding for Granzymes A and B, second, that $\gamma\delta$ IELs do not drastically change the genes they express in the presence of *Yersinia* and, third, that $\gamma\delta$ IELs differ from activated MLN CD8 $\alpha\beta^+\alpha\beta$ T cells in the expression or lack of expression of some genes. Around the same time, Adrian C. Hayday's group found that CD8 $\alpha\alpha^+\alpha\beta$ IELs and CD8 $\alpha\alpha^+\gamma\delta$ IELs exhibited very few differences in gene expression (Shires, Theodoridis et al. 2001). This suggested that a difference between $\gamma\delta$ and $\alpha\beta$ IELs is important in delaying the dissemination of *Yersinia* and that this difference may be the $\gamma\delta$ TCR.

In order to study the responses of $\gamma\delta$ IELs to the recognition of $\gamma\delta$ TCR ligands it is possible to use mice that are transgenic for $\gamma\delta$ TCRs that recognize known ligands. Although the scope of such ligands is still unknown, the MHC class Ib molecules T10 and T22 have been found to be recognized by two separate $\gamma\delta$ TCRs, G8 and KN6 (Bluestone, Cron et al. 1988; Bonneville, Ito et al. 1989; Crowley, Reich et al. 1997), and $\gamma\delta$ T cells in normal mice appear to recognize these molecules based on tetramer staining experiments (Crowley, Fahrer et al. 2000). The G8 $\gamma\delta$ TCR was originally derived from the G8 $\gamma\delta$ T cell clone (Houlden, Matis et al. 1989) that was obtained by first immunizing BALB/c *nu/nu* mice with irradiated B10.BR splenocytes (Matis, Cron et al. 1987). G8 mice are transgenic for the G8 $\gamma\delta$ TCR (Dent, Matis et al. 1990) that has been shown to recognize T10^b with the relatively high affinity of 0.13 μ M (Crowley, Fahrer et al. 2000) and G8 $\gamma\delta$ T cells can be stimulated by T10/T22^{b,k} but not by T10^d.

I compared the genes G8 $\gamma\delta$ IELs express immediately following isolation to the genes they express after 2 days of *in vitro* coculture with T10/T22^b-expressing splenocytes. Amazingly, the genes expressed by freshly-isolated G8 $\gamma\delta$ IELs did not change much after two days of coculture. In addition, freshly-isolated G8 $\gamma\delta$ IELs expressed similar genes to the ones previously identified using the *Yersinia* infection model and also appeared to be constitutively transcribing genes associated with effector functions. Thus, $\gamma\delta$ IELs always appear to constitutively transcribe genes associated with

effector functions and may regulate their function at the level of translation and/or secretion as opposed to transcription. That way, they may be able to respond quickly to activating signals, but in a controlled manner.

Materials and Methods

Mice

G8 BALB/c mice were maintained by crossing G8 BALB/c mice with BALB/c mice. G8 BALB/c mice were crossed with RAG2^{KO} BALB/c mice from Taconic (C.129S6(B6)-Rag2^{tm1Fwa} N12) to generate G8 RAG2^{KO} BALB/c mice that were maintained by crossing with RAG2^{KO} BALB/c mice. H2^{b/d} BALB/c mice were produced by crossing *b* haplotype-expressing BALB.B mice from Harlan with BALB/c mice.

Screening for G8 Transgenic Mice

Approximately four copies of the rearranged γ and δ chains are co-integrated into the genome of G8 mice (Dent, Matis et al. 1990). For this reason, mice were screened by genomic PCR with primers for the rearranged V-D and J segments of the δ chain. The expected PCR product had a size of only 71 bp and the primer sequences were as follows (5'->3'):

G8-VD-71:	TAC	TTC	TGT	GCT	GCT	GAC	ACG
G8-J-71:	CCA	AAG	ACG	AGT	TTG	TCG	GTA

The initial denaturing was carried out for 10 minutes at 94°C. 34 cycles were performed using 1 minute 94°C denaturing, 1 minute 55°C annealing, and 2 minute 72°C elongating steps. The final elongation was performed at 72°C for an additional 10 minutes.

Isolation of γδ IELs and Splenocytes

IELs were isolated from the small intestine of a G8 RAG2^{KO} BALB/c mouse based on a published protocol (Mosley and Klein 1992) except that the nylon wool and Percoll fractionation steps were omitted. This resulted in a mixture of IELs and epithelial cells. IELs were then enriched as follows. Cells were resuspended in media supplemented with 5 mM EDTA (M+E) in order to prevent clumping, because E-Cadherin/E-Cadherin interactions are dependent on divalent cations. Cells from one intestine were blocked on ice for 20 minutes with 1 ml M+E containing 20 μ g of FcBlock (clone 2.4G2, BD Biosciences Pharmingen). Thereafter, 1 ml of M+E containing 20 μ g of biotinylated anti-CD69 antibody (clone H1.2F3, BD Biosciences Pharmingen) was added to the mixture for an additional 30 minutes on ice. After the stain, the cells were washed twice with M+E, resuspended with 200 μ l of anti-biotin MACS microbeads (Miltenyi Biotec) and 800 μ l of M+E, and incubated at 4°C for 15 minutes. The cells were washed once with M+E, resuspended in 2 ml of M+E, and passed through an LS column (Miltenyi Biotec) in the absence of a magnet to remove adherent cells. IELs were obtained by enriching for cells that remained bound in the column in the presence of a magnetic field using two sequential LS columns and the manufacturer's recommended protocol. IELs were then washed three times in media without EDTA and resuspended at a concentration of 10⁷ cells/ml.

Splenocytes were obtained from G8 RAG2^{KO} BALB/c mice and H2^{b/d} BALB/c mice using standard isolation procedures and resuspended at concentrations of 10⁷ cells/ml.

In Vitro γδ T cell Activation and RNA Isolation

Either G8 RAG2^{KO} BALB/c $\gamma\delta$ IELs or splenocytes were combined in a 1:5 ratio with H2^{b/d} BALB/c splenocytes and were cocultured at 37°C for 2 days in RPMI supplemented with 10% FCS, β -ME, glutamine, antibiotics and sodium pyruvate. Immediately after the $\gamma\delta$ IEL isolation, 10⁷ cells were dissolved in 1 ml of Trizol (Invitrogen) and frozen at -80°C for later analysis. After 2 days, the cells in the two cultures were stained with APC-labeled antibodies to the δ chain of the $\gamma\delta$ TCR (clone GL3) and to V γ 2 (clone UC3-10A6), FITC-labeled antibodies to T10/T22 (clone 7H9), PE-labeled antibodies to CD69 (clone H1.2F3), and Cy7PE-labeled antibodies to B220 (clone RA3-6B2). Splenic $\gamma\delta$ T cells and $\gamma\delta$ IELs were enriched by using anti-APC MACS microbeads (Miltenyi) where the cells that bound to two sequential LS columns in magnetic fields were dissolved in 1 ml of Trizol after removing aliquots for analysis by flow cytometry. RNA was isolated from all three samples, converted into RNA probes using the standard Affymetrix protocol, and hybridized to Affymetrix Mouse Expression Set 430 GeneChips.

Results and Discussion

The Activation of γδ IELs

Because $\gamma\delta$ TCR ligands for the majority of $\gamma\delta$ IELs are not known, it was necessary to use a system where the $\gamma\delta$ IELs expressed a $\gamma\delta$ TCR that was specific for a known $\gamma\delta$ TCR ligand. For this reason, G8 RAG2^{KO} BALB/c mice, which lack $\alpha\beta$ T cells and B cells, were used. These mice contain $\gamma\delta$ T cells that can be activated through their recognition of the MHC class Ib molecules T10 and T22 of the *b*, but not of the *d*, haplotype.

IELs in normal mice and G8 RAG2^{KO} BALB/c mice were found to express low levels of CD69. This was also the case for the IELs of OT-I RAG2^{KO} C57Bl/6 mice in the absence of an activating peptide like SIINFEKL, suggesting that the expression of CD69 by IELs can be due to factors other than the recognition of agonist TCR ligands.

Thus, IELs were isolated based on their expression of CD69 because the isolation of $\gamma\delta$ IELs based on their expression of $\gamma\delta$ TCRs may lead to the unintended activation of these cells – especially, when coupled with the addition of magnetic beads that can bind to more than one anti- $\gamma\delta$ TCR antibody. This resulted in a high purity of $\gamma\delta$ IELs. 80% of cells enriched during the IEL isolation were alive and 95% of these cells expressed the $\gamma\delta$ TCR, although, 1.5% of theses cells did not express the α_E integrin that is an adhesion molecule characteristic of IELs. Approximately 96% of living cells expressed the α_E integrin and not all of these expressed the $\gamma\delta$ TCR, suggesting that there were some α_E -expressing CD69⁺ cells that were not $\gamma\delta$ T cells. Strangely, the majority of isolated IELs did not appear to express CD8 α , which was not the case for the IELs of an OT-I RAG2^{KO} C57Bl/6 mouse that expressed very high levels. RNA was prepared from some of the G8 $\gamma\delta$ IELs immediately after isolation in order to determine the transcripts that are normally expressed by these cells.

In order to activate $\gamma\delta$ IELs, these cells were cocultured with a 5-fold excess of T10/T22^b-expressing splenocytes for 2 days. 2 days of activation were used because this provides for sufficient time for activation and because surface TCR levels after one day of activation are very low and sometimes undetectable for splenic $\gamma\delta$ T cells. In order to

compare $\gamma\delta$ IELs to $\gamma\delta$ T cells of the central immune system, splenocytes from G8 RAG2^{KO} BALB/c mice were also cocultured with T10/T22^b-expressing splenocytes for 2 days.

Following the 2 day cocultures, the production of additional RNA was observed. 0.24 pg/cell of RNA from 10^7 freshly-isolated $\gamma\delta$ IELs (2.4 µg), 0.62 pg/cell of RNA from 5.4x10⁶ 2 day-activated IELs (3.3 µg), and 1.9 pg/cell of RNA from 1.4x10⁶ 2 dayactivated splenic $\gamma\delta$ T cells (2.6 µg) was obtained. Thus, the total RNA of activated IELs was about twice that of freshly-isolated IELs and activated splenic $\gamma\delta$ T cells expressed even more. In addition, the 5.4x10⁶ activated IELs resulted from about 4x10⁶ input IELs so some cell division appeared to have taken place.

The coculture also led to pronounced blasting, an increase in granularity, the expression of activation markers, and the expression of IFN γ . B220 may be an activation marker of $\gamma\delta$ IELs (Guehler, Bluestone et al. 1996) and B220 was expressed on the $\gamma\delta$ IELs following two days of activation. As expected, B220 was not expressed on activated splenic $\gamma\delta$ T cells. In addition, both $\gamma\delta$ IELs and splenic $\gamma\delta$ T cells expressed elevated levels of T10/T22 and high levels of CD69 after activation. However, in the absence of ligand-expressing splenocytes, $\gamma\delta$ IELs lost their expression of CD69 and RNA levels were not above background levels. In order to determine if there were any changes to the transcripts expressed by $\gamma\delta$ IELs after activation and to see if these differed from those of activated splenic $\gamma\delta$ T cells, microarray analyses of the isolated RNAs were performed.

The Activation of IELs through Their TCRs has Little Effect on Their Transcripts

The previous *Yersinia* microarray experiments showed that, based on the genes expressed by $\gamma\delta$ IELs in conventional mice, $\gamma\delta$ IELs are constitutively activated. Adrian C. Hayday's group reached similar conclusions through SAGE analysis and found that transcripts for Granzymes A and B and the chemokine RANTES comprise about 3% of IEL mRNA (Shires, Theodoridis et al. 2001). The analysis of the freshly-isolated G8 RAG2^{KO} BALB/c $\gamma\delta$ IEL mRNA showed that these IELs did not differ much from what was observed in IELs during the *Yersinia* microarray experiments (*Tables 2.1* and *2.2*).

In terms of immune defense mediators, transcripts for MIP-1 α /CCL3, MIP-1 β /CCL4, RANTES/CCL5, Lymphotactin/XCL1, TGF β , Granzyme A, Granzyme B, Serglycin/Prg1, Fas ligand/Tnfsf6, Leukotriene A4 hydrolase and various Defensins were observed. In terms of proteins associated with intestinal function and homeostasis, transcripts for Carbonic anhydrase 2, Fibrinogen-like protein 2, Furin, Cystatin F and Alcohol dehydrogenase 1 were observed. In terms of cell-surface molecules, transcripts for CD3 γ , FccRI γ subunit, 2B4/CD244, Lag3/CD223, Glycoprotein 49B/Lilrb4, CTLA-4/CD152, Tnfrsf1a, Tnfrsf1b, IFN γ R1, IL-12R β 1 and β 2 and Prostaglandin E receptor, EP4 subtype were observed. Overall, the genes expressed by the IELs of G8 RAG2^{KO} BALB/c mice indicated that, even in the apparent absence of stimulatory TCR ligands, IELs express genes that are consistent with their being in a state of constitutive activation.

Following 2 days of activation, $\gamma\delta$ IELs and splenic $\gamma\delta$ T cells were found to express a large number of genes differentially (*Figure 2.1A*). Surprisingly, freshlyisolated IELs and 2 day-activated IELs exhibited almost no major differences in gene expression as indicated by the tighter diagonal (*Figure 2.1B*) and suggested that there was little to no serum response (Iyer, Eisen et al. 1999), little to no response to the recognition of TCR ligands, and little to no response to two days of culture. The changes that were observed suggested that the function of IELs may be to protect against epithelial cell damage and bacteria.

Along those lines, the expression of Claudin 3 was induced after activation. This protein is important in the remodeling of tight junctions and suggests that IELs may help mend holes in the epithelial barrier. Transcripts encoding the secreted proteins RegIII β /Pap and RegIII γ , which appear to have growth stimulating effects, and transcripts encoding Trefoil factor 3, which is a peptide that is important in repairing the epithelial barrier, were also increased.

Transcripts for antibacterial proteins were also upregulated. These included those coding for Lysozyme and the Defensin-related cryptdins 5 and 6. The expression of these genes appeared to be specific to $\gamma\delta$ T cells in the IEL compartment and additional related genes were also preferentially-expressed by $\gamma\delta$ IELs but were not upregulated after activation.

The expression of Trefoil factor 3 and antibacterial proteins has commonly been attributed to goblet cells and Paneth cells, respectively. However, antibodies to Trefoil factor 3 were observed to stain IEL-like cells in the days following the administration of methotrexate to rats (Verburg, Renes et al. 2002). It has been reported that cells other than Paneth cells are stained by an antibody to Lysozyme where this staining was attributed to background staining (Ariza, Lopez et al. 1996). In addition, cryptdin mRNA could be detected inside the villi of 24 day-old mice (Ouellette, Greco et al. 1989), an age where many IELs are B220⁺. It will be necessary to analyze the expression of these genes in sorted IELs in order to be sure that IELs are responsible for the observed expression of antibacterial and protective proteins.

Regardless, IELs show very few changes to their transcripts following activation that includes two days of *in vitro* culture, which exposes them to an environment that is quite unlike that of the small intestine. This reinforces the idea that IELs are, at all times, ready to act. Whether this still requires translation or whether the majority of the proteins are already synthesized remains to be seen. If IEL function is translation-dependent, then it will be important to understand the kinetics thereof following TCR-dependent and TCR-independent types of activation.

Autoreactive IELs May Be Disarmed

The *Yersinia* experiments indicated that the $\gamma\delta$ IELs expressed reduced levels of certain signaling molecules and transcription factors. However, the G8 RAG2^{KO} BALB/c $\gamma\delta$ IEL activation data showed that transcripts for Janus kinase 1, Diacylglycerol kinase alpha, Dual specificity phosphatase 2, and Receptor for activated C kinase were present in freshly-isolated $\gamma\delta$ IELs while transcripts for Protein Kinase C theta were still absent (*Table 2.1*). In addition, it has been reported that autoreactive IELs are not deleted but that their ability to respond at all to TCR signals may be lost or reduced (Barrett, Tatsumi et al. 1993; Guehler, Finch et al. 1998). This suggests that these differences in expression between $\gamma\delta$ IELs of normal mice and $\gamma\delta$ IELs of G8 RAG2^{KO} BALB/c mice may be behind the unresponsiveness towards TCR ligands that has been reported in Thy-1⁻ CD8 $\alpha\alpha^+ \alpha\beta$ IELs (Viney and MacDonald 1992; Siebrecht, Hsia et al. 1993). Because

G8 BALB/c mice that have been crossed onto *b* haplotype-expressing backgrounds, such as BALB.B, still contain IELs, it will be interesting to see if their $\gamma\delta$ IELs lack the expression of some signaling molecules that are found in the $\gamma\delta$ IELs of G8 BALB/c mice.

Conclusion

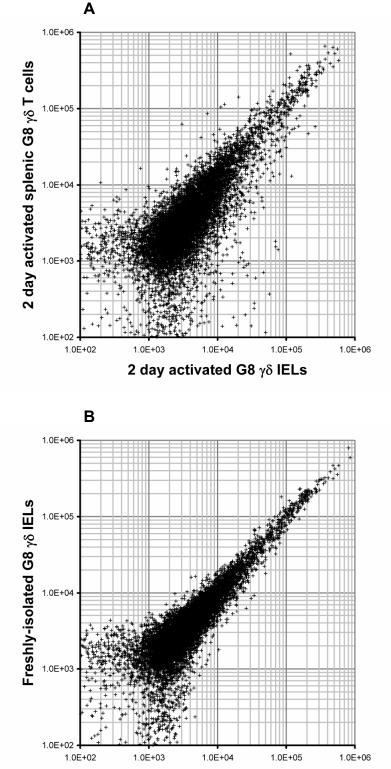
Cumulatively, the $\gamma\delta$ IEL microarray experiments show that $\gamma\delta$ IELs do not appear to respond to *Yersinia* infection or to $\gamma\delta$ TCR ligation by profoundly changing the transcripts they express and raise the original question of why there is a difference between the dissemination of *Yersinia* in wild-type C57Bl/6 mice and TCR δ chaindeficient mice. First, this may be due to the activation of only a small fraction of $\gamma\delta$ IELs where their transcriptional changes would go unnoticed amidst the transcripts of the other $\gamma\delta$ IELs. However, even $\gamma\delta$ TCR ligation does not lead to large transcriptional changes. Second, this may be due to differences in translation following the recognition of $\gamma\delta$ TCR ligands, which would be helpful if a cell had to respond quickly to a stimulus. Third, this may be due to the mere presence of $\gamma\delta$ T cells in mice before and/or during Yersinia infection. It has been found that mice deficient in $\alpha\beta$ T cells show both an enhanced expression of autoreactive antibodies and larger percentages of antibodies that are of the T cell-dependent IgG and IgE isotypes compared to normal mice (Wen, Roberts et al. 1994). In addition, some $\gamma\delta$ T cells in normal mice express proteins that are consistent with these cells having been activated at some point. Thus, $\gamma\delta$ T cells may influence the function and development of epithelial cells (Komano, Fujiura et al. 1995), B cells and other cells of the immune system that could then slow the dissemination of Yersinia in the first few days after infection.

Figure Legends

Figure 2.1: Activated IELs and splenic $\gamma\delta$ T cells show differences in gene expression while TCR-mediated IEL activation only leads to minor changes in gene expression

Gene expression levels were analyzed for freshly-isolated $\gamma\delta$ IELs from a G8 RAG2^{KO} BALB/c mouse and splenic $\gamma\delta$ T cells and $\gamma\delta$ IELs from a G8 RAG2^{KO} BALB/c mouse that had been cocultured for 2 days with $\gamma\delta$ TCR ligand-expressing H2^{b/d} BALB/c splenocytes. Transcripts that were called "present" in at least one of the three samples are represented in the graphs. (A) A comparison between gene expression levels in the 2 day-activated splenic $\gamma\delta$ T cell and $\gamma\delta$ IEL samples is shown. (B) A comparison between the gene expression levels in the freshly-isolated and the 2 day-activated $\gamma\delta$ IEL samples is shown.

Table Legends


Table 2.1: Expression levels of genes expressed preferentially by MLN CD8⁺ $\alpha\beta$ T cells

Gene expression values are shown for signal transduction molecules and transcription factors that had been identified as being preferentially expressed by MLN $CD8^+ \alpha\beta$ T cells ($\alpha\beta$ T; averaged from all six samples) compared to $\gamma\delta$ IELs ($\gamma\delta$ T; averaged from all four samples) in Chapter 1 using the Affymetrix Murine Genome 6500 set. Values from 2 day-activated IELs (act IEL), freshly-isolated IELs (iso IEL), and 2 day-activated splenic $\gamma\delta$ T cells (S. $\gamma\delta$ T) have been added as well as their probe set numbers in the newer Affymetrix Mouse Expression Set 430. Transcripts in the *Yersinia* experiments that were called absent are indicated by 'A'. Transcripts called absent also have their expression values shaded gray.

Table 2.2: Expression levels of genes expressed preferentially by γδ IELs

Average gene expression values are shown for genes that had been identified as being preferentially expressed by $\gamma\delta$ IELs ($\gamma\delta$ T) compared to MLN CD8⁺ $\alpha\beta$ T cells ($\alpha\beta$ T) in Chapter 1 using the Affymetrix Murine Genome 6500 set. Expression levels in epithelial cells (Epi.) are also shown. In addition, values from 2 day-activated IELs (act IEL), freshly-isolated IELs (iso IEL), and 2 day-activated splenic $\gamma\delta$ T cells (S. $\gamma\delta$ T) have been added as well as their probe set numbers in the newer Affymetrix Mouse Expression Set 430. Transcripts in the *Yersinia* experiments that were called absent are indicated by 'A'. Transcripts called absent also have their expression values shaded gray.

Figure 2.1: Activated IELs and splenic $\gamma\delta$ T cells show differences in gene expression while TCR-mediated IEL activation only leads to minor changes in gene expression

2 day activated G8 $\gamma\delta$ IELs

Table 2.1: Expression levels of genes expressed preferentially by MLN $CD8^+ \alpha\beta$ T cells

Sign	Signal transduction										
αβ Τ	γδ Τ	act IEL	iso IEL	S . γδ T	Description	Probe set					
9792	1944	272616	292035	299127	Gnb2-rs1 (receptor of activated prot. kinase C)	1455168_a_at					
199	38	699	846	1833	Rasa3 (RAS p21 protein activator 3/GapIII)	1415850_at					
134	A	19417	15144	9021	Dgka (diacylglycerol Kinase, alpha)	1418578_at					
111	A				Dgka (diacylglycerol Kinase, alpha)						
117	15	14766	13910	5713	Jak1 (janus kinase 1)	1433803_at					
		2935	2186	712	Jak1 (janus kinase 1)	1433804_at					
		25065	22746	11872	Jak1 (janus kinase 1)	1433805_at					
83	A	5099	6632		Dusp2 (dual specificity phosphatase 2)	1450698 <u>a</u> t					
51	A	4020	1437	7182	Prkcq (protein kinase C, theta)	1426044_a_at					

Transcription factors αβΤ_γδΤ_act IEL iso IEL S

αβ Τ	γδ Τ	act IEL	iso IEL	S. γδ T	Description	Probeset
554	A	2937	1275	100	Klf2 (Kruppel-like factor 2 (lung))	1448890_at
407	18	16013	10662	26944	Satb1 (special AT-rich sequence binding prot. 1)	1416007_at
		6828	3838	12995	Satb1 (special AT-rich sequence binding prot. 1)	1416008_at
		1218	286	3949	Satb1 (special AT-rich sequence binding prot. 1)	1436182_at
148	27	3746	2147	3410	Klf13 (Kruppel-like factor 13)	1432543_a_at
144	12	23299	15508	7513	Tcf7 (transcription factor 7, T-cell specific)	1433471_at
		6560	6963	1284	Tcf7 (transcription factor 7, T-cell specific)	1450461_at
140	A	1758	170	1192	Lef1 (lymphoid enhancer binding factor 1)	1421299_a_at
73	A	1423	567	107	Klf3 (Kruppel-like factor 3 (basic))	1421604_a_at
		3155	3999	1540	Klf3 (Kruppel-like factor 3 (basic))	1429360_at
		5666	3675	3148	Klf3 (Kruppel-like factor 3 (basic))	1431630_a_at
60	A	7335	11813	14308	Hmga1 (high mobility group AT-hook 1)	1416184_s_at

Table 2.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs (page 1 of 4)

Immune defense mediators										
γδ Τ	αβΤ	Epi.	act IEL	iso IEL	S . γδ T	Description	Probe set			
	Cytokir	nes/Che	emokine	s						
3065	566	A	69594	39894	1800	Ccl5 (RANTES)	1418126_at			
215	49	A	17600	19554	4519	Xcl1 (Lymphotactin)	1419412_at			
58	25	A	12651	7996	3611	lfrd1 (TIS7/PC4, homolog)	1416067_at			
22	8	A				lfrd1 (TIS7/PC4, homolog)				
39	A	A	1323	3110	4509	Ccl3 (MIP-1-alpha)	1419561_at			
38	A	A	5682	6365	5814	Ccl4 (MIP-1-beta)	1421578_at			
36	A	A	1055	1397	97	Spp1 (Eta-1)	1449254_at			
30	A	A	672	898	205	Tgfb3 (Transforming Growth Factor, beta 3)	1417455_at			
			10538	11978	13030	Tgfb1 (Transforming Growth Factor, beta 1)	1420653_at			
-	Cytoto	kic Prot	teins/Rei	lated	_					
2630	116	19	119521	89613	13032	Gzma (Granzyme A)	1417898_a_at			
2117	59	8	116228	127846	521763	Gzmb (Granzyme B)	1419060_at			
583	258	22	84510	70292	60400	Prg1 (Serglycin)	1417426_at			
275	A	A	4165	4424	2028	Tnfsf6 (Fas Ligand)	1418803_a_at			
			12626	8377	5858	Tnfsf6 (Fas Ligand)	1449235_at			
222	8	153	30927	8478	141	Defcr1,3,6 (Cryptdin)	1450631 <u>x</u> at			
	Enzym	es, Infl	ammatio	n	-					
174	97	19	6129	6881	6021	Leukotriene A-4 Hydrolase	1434790_a_at			
			994	467	1151	Leukotriene A-4 Hydrolase	1426807_at			
			352	419	1178	Leukotriene A-4 Hydrolase	1453528_at			
73	35	40	3610	5595	1514	Ncf1 (p47phox)	1425609_at			
			4106	3744	2359	Ncf1 (p47phox)	1451767_at			

Cho	lastai	rol/l	inid h	ninevr	othas	is and metabolism							
	Cholesterol/Lipid biosynthesis and metabolism γδ τ αβ τ Epi. act IEL iso IEL S. γδ τ Description Probe set												
110	A	A	269	191		Apoe (Apolipoprotein E)	1432466 a at						
66	27	A	7430	6896	13281	Fdps (Farnesyl diphosphate synthase)	1423418_at						
65	16	Α	1430	851	2181	Fdft1 (Squalene Synthase)	1438322 <u>x</u> at						
			1139	1528	1082	Fdft1 (Squalene Synthase)	1448130_at						
61	11	Α	1135	597	328	Pltp (Plasma Phospholipid Binding Protein)	1417963_at						
54	29	A	11957	13513	9789	Acadl (Acetyl CoA Dehydrogenase, long-chain)	1448987_at						
51	A	A	6074	5192	4881	LdIr (LDL Receptor)	1421821_at						
			405	558	485	Ldir (LDL Receptor)	1431947_at						
50	A	A	3655	3719	5263	Sqle (Squalene Epoxidase)	1415993_at						
44	23	A	5754	11688	41825	Scd2 (Stearoy-Coenzyme A desaturase 2)	1415822_at						
			2528	2794	16238	Scd2 (Stearoy-Coenzyme A desaturase 2)	1415823_at						
			899	2356	3520	Scd2 (Stearoy∣-Coenzyme A desaturase 2)	1415824_at						
38	A	A	4697	5128	5515	Adfp (Adipose Differentiation Related Protein)	1448318_at						

Table 2.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs (page 2 of 4)

Intestinal function and homeostasis

γδ Τ	αβ Τ	Epi.	act IEL	iso IEL	S. γδ T	Description	Probe set			
289	A	A	11632	6526	555	Car2 (Carbonic Anhydrase isozyme II)	1448752_at			
226	A	A	6002	4478	285	FgI2 (Fibrinogen-like Protein)	1421854_at			
			5795	4782	866	FgI2 (Fibrinogen-like Protein)	1421855_at			
152	8	A	7980	9752	6437	Serpina3g (Spi2/EB1 Proteinase Inhibitor)	1424923_at			
116	A	A	13404	4463	3529	Furin	1418518_at			
116	59	A	11870	11520	16576	Cst7 (Cystatin F/leukocystatin)	1419202_at			
91	A	A	1523	2336	108	Ela1 (p6-5/preproelastase, homolog)	1423693_at			
21	A	A	2894	4080	3145	Pafah1b3 (PAF acetylhydrolase, 1b, a1)	1416410_at			
45	A	91	455	175	106	Serpinb1a (Monocyte/neutrophil elastase inhib.)	1448301_s_at			
108	A	111	2410	907	153	Spink3 (Serine protease inhibitor, Kazal type 3)	1415938_at			
165	14	150	6665	5779	467	Adh1 (Alcohol dehydrogenase class I)	1416225_at			
104	A	297	206	275	82	Mep1b (Meprin 1 beta)	1418215_at			
79	A	1567	16585	5266	678	Tff3 (trefoil factor 3, intestinal)	1417370_at			

Cell-	Cell-surface molecules											
γδΤ	αβΤ	Epi.	act IEL	iso IEL	S. γδ T Description	Probe set						
	TCR as											
726	394	A	62564	47811	14483 Cd3g (CD3-gamma)	1419178_at						
597	16	17	9357	5906	738 Fcer1g (Fc-epsilon-RI gamma subunit)	1418340_at						
	NK Activating/Inhibitory Receptors											
182	A	Α	2855	2552	447 CD244 (2B4)	1449991_at						
138	A	A	6441	8624	11950 Lag3	1449911_at						
87	A	Α	2722	2052	1550 Kira5 (Ly-49E-GE)	1420789_at						
58	A	Α	4292	3860	8645 Lilrb4 (NK Cell Receptor gp49B)	1420394 <u>s</u> at						
55	A	13	2437	1776	5627 Pdcd1 (PD-1/Programmed Cell Death 1)	1449835_at						
49	A	Α	3676	4951	4171 Ctla4	1419334_at						
38	A	Α	59	608	377 Kirb1a (NK Cell Receptor NKR-P1A)	1450296_at						
-	Cytokin	e/Chei	mokine/S	Similar								
262	46	Α	25339	13861	3813 Tnfrsf1b (Tumor Necrosis Factor Receptor 2)	1418099_at						
			6331	6258	2247 Tnfrsf1b (Tumor Necrosis Factor Receptor 2)	1448951_at						
125	49	100	4463	5360	2453 Tnfrsf1a (Tumor Necrosis Factor Receptor 1)	1417291_at						
225	91	30	33877	25550	3561 Ifngr1 (Interferon gamma Receptor)	1448167_at						
209	70	Α	18790	13909	31026 Il2rb (Interleukin 2 Receptor, beta chain)	1417546_at						
			15743	11673	22759 Il2rb (Interleukin 2 Receptor, beta chain)	1448759_at						
31	A	Α	2528	2980	6880 II12rb1 (Interleukin 12 Receptor, beta 1)	1418166_at						
40	A	Α	1801	1328	1804 Ccrl2 (L-CCR chemokine receptor)	1427736_a_at						
62	A	A	1247	678	664 Ptger4 (Prostaglandin E Receptor, EP4 sub.)	1421073_a_at						

Table 2.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs (page 3 of 4)

γδΤ	αβΤ	Epi.	act IEL	iso IEL	S . γδ T	Description	Probe set
1251	353	271	33747	24454		Atf4 (CREB2)	1448135_at
478	167	A	3567	2988	2640	ldb2 (ld-2)	1422537_a_at
			3227	4695	2944	ldb2 (ld-2)	1435176_a_at
59	11	188	1582	1376	1227	ldb1 (ld)	1425895 <u>a</u> at
454	233	58	22398	16347	5549	Junb (Jun-B oncogene)	1415899 <u></u> at
299	171	26	22526	17233		H3f3b (H3 histone, family 3B)	1420376_a_at
			92356	63569		H3f3b (H3 histone, family 3B)	1455725_a_at
298	125	100	28226	13752	918	Fos (FBJ osteosarcoma related oncogene)	1423100_at
281	80	50	8413	6743		Max (Myc-associated factor X)	1423501_at
157	49	A	12120	10190		Nr4a1 (Nur77/N10/NGFI-B)	1416505_at
152	99	A	6316	3870		Zfp36I1 (Butyrate Response Factor 1/TIS11)	1422528_a_at
			10804	4920		Zfp36I1 (Butyrate Response Factor 1/TIS11)	1450644_at
92	26	A	11174	10897		Tnfaip3 (A20/TNF Induced Protein 3)	1450829_at
86	14	A	6325	2860		Tgif (TG Interacting Factor)	1422286_a_at
76	24	A	2738	1810	3540		1417679_at
70	24	61	13341	7627		Ddit3 (Chop-10/Gadd153)	1417516_at
68	33	A	12288	6929		Gtf2b (General transcription factor IIB)	1451135_at
64	31	A	6537	5656	3847		1418616_at
59	A	104	1109	494		Klf4 (Kruppel-like factor 4 (gut))	1417394_at
			1664	1002		Klf4 (Kruppel-like factor 4 (gut))	1417395_at
58	A	A	993	1592		Runx2 (PEBP2a1/PEBP2alphaA/CBFA1)	1424704_at
			1059	1903		Runx2 (PEBP2a1/PEBP2alphaA/CBFA1)	1425389_a_at
			2265	340		Runx2 (PEBP2a1/PEBP2alphaA/CBFA1)	1426034_a_at
57	30	A	7232	8513		TSC-22-like protein, homolog	1448412_a_at
			902	696		TSC-22-like protein, homolog	1425206_a_at
51	15	A	5186	4568		Xbp1 (X box binding protein-1)	1420011_s_at
			15477	13377		Xbp1 (X box binding protein-1)	1420886_a_at
			13009	9911		Xbp1 (X box binding protein-1)	1437223_s_at
51	21	36	2451	2606		Nfe2l2 (p45 NF-E2 related factor 2)	1416543_at
49	A	A	960	1852		Sos2 (Son of Sevenless homolog 2)	1452281_at
48	A	A	3824	3693		Cebpb (C/EBP beta)	1427844_a_at
			6489	3337		Cebpb (C/EBP beta)	1418901_at
			3338	3187		Cebpb (C/EBP beta)	1427843_at
48	A	A	5409	6397		Icsbp1 (Interferon Concensus Sequence BP 1)	1416714_at
			2516	2077		Icsbp1 (Interferon Concensus Sequence BP 1)	1448452_at
47	A	A	16487	9218		Ahr (Arylhydrocarbon Receptor)	1422631_at
		70	3036	3897		Ahr (Arylhydrocarbon Receptor)	1450695_at
44	A A	73	4853 2601	4043 2879		Atf3 (LRG-21)	1449363_at
36		41		2879 697		Tgfb1i4 (TSC-22)	1425742_a_at
			164			Tgfb1i4 (TSC-22)	1433899_x_at
			1036 1692	1096 96		Tgfb1i4 (TSC-22) Tgfb1i4 (TSC-22)	1439111_at
			1457	96 1897		Tgfb1i4 (TSC-22)	1454758_a_at 1454971 x at
			36	89		Tgfb1i4 (TSC-22)	1454971_x_at 1456132_x_at
35	18	А	6817	4823		Jun	1417409 at
55	10	A	3972	4023 1961	1093		1417409_at 1448694 at
33	A	A				Prdm1 (Blimp1)	1420425 at
55	PA -	14	1402	2004	2125		, <u>120720</u> ai

Transcription factors γδΤ αβΤ Ερι. act IEL iso II

Table 2.2: Expression levels of genes expressed preferentially by $\gamma\delta$ IELs (page 4 of 4)

			uctio				
						Description	Probe set
1020	A	A	58114	37676		Rgs1 (Regulator of G-protein signalling 1)	1417601_at
1207	21	A				Rgs1 (Regulator of G-protein signalling 1)	4440047
			24132	11740		Rgs2	1419247_at
620	 101	 77	8739 27055	3550 14569		Rgs2 Dusp1 (MAPK phosphatase 1)	1419248_at 1448830_at
479	308	27	22620	11285		Ptpn8	1417995 at
337	195	A	4248	3262		Stat3	1424272 at
			28938	24389	28366		1426587 a at
271	94	113	8679	7513		Pim1 (proviral integration site 1)	1423006 at
			21388	11717		Pim1 (proviral integration site 1)	1435458 at
185	41	17	11272	15401		Bcl2a1a (A1)	1419004_s_at
			931	595	343	Bcl2a1a (A1)	1437913_at
			463	356	109	Bcl2a1a (A1)	1450812_at
155	62	A	6714	9307		Inpp5d (Ship)	1418110_a_at
			3336	4107		Inpp5d (Ship)	1424195_a_at
123	77	A	7296	6700		Smpdl3a (ASM-like phosphodiesterase 3a)	1416635_at
122	14	A	6888	2748		Pik3r1 (PI-3-kinase, reg. subunit p85alpha)	1425515_at
			18755	8636		Pik3r1 (PI-3-kinase, reg. subunit p85alpha)	1451737_at
22	A	A				Pik3cb (PI-3-kinase, cat. subunit, beta)	4440440
109	55	A	6135	5088		Rbl2 (Rb2/p130)	1418146_a_at
36	^	^	6313 3631	3569 2246		Rbl2 (Rb2/p130)	1425981_a_at
105	A 36	A A	1409	2240		Rb1 (p105Rb) Traf5 (TNF receptor-associated factor 5)	1417850_at 1448861 at
98	50 59	A	3837	4639		Map4k1 (Serine/threonine kinase)	1439323_a_at
95	28	A	3808	2458		Prkacb (cAMP-dep. prot. kin., beta-cat. sub.)	1420610 at
			11669	8534		Prkacb (cAMP-dep. prot. kin., beta-cat. sub.)	1420611 at
39	27	А	3217	4440		Prkaca (cAMP-dep. prot. kin., alpha subunit)	1450519_a_at
88	A	A	4508	5663		Crem (cAMP-responsive element modulator)	1418322 at
			8789	8476		Crem (cAMP-responsive element modulator)	1449037_at
86	50	A	2851	1888	1992	Map3k1 (MAP kinase kinase kinase 1)	1424850_at
86	41	A	22126	13321	7702	Gna13 (Guanine Nucleotide BP, a13)	1422555_s_at
			13169	7661		Gna13 (Guanine Nucleotide BP, a13)	1422556_at
			10085	6615		Gna13 (Guanine Nucleotide BP, a13)	1430295_at
			9926	5409		Gna13 (Guanine Nucleotide BP, a13)	1450656_at
			19168	9105		Gna13 (Guanine Nucleotide BP, a13)	1453470_a_at
			8646	5792		Gna13 (Guanine Nucleotide BP, a13)	1460317_s_at
66 61	26	91 51	5322	7172		Mapk3 (Mitogen Activated Protein kinase (erk-1))	_
61 61	27 17	51 A	6385	5275 5798		Egr1 (Early Growth Response 1) Cish (Cytokine-inducible SH2-containing protein)	1417065_at
61 57	A	A	9331 1069	5796 2154		Ptpn5 (Protein Tyrosine phosphatase STEP61)	1448724_at 1423544 at
56	14	A	5178	5208		Gadd45b (MyD118)	1423344_at 1449773_s_at
			5679	7080		Gadd45b (MyD118)	1450971 at
23	А	А	1825	721		Gadd45a	1449519 at
56	A	A	4258	3211		c-Fes (tyrosine kinase)	1427368_x_at
			5069	2638		c-Fes (tyrosine kinase)	1452410_a_at
54	26	A	4725	4762	5595	Impa1 (myo-inositol monop'tase 1)	1423127_at
			537	706	1618	Impa1 (myo-inositol monop'tase 1)	1436848 <u>x</u> at
52	A	A	2056	2185	4029	Casp3 (Caspase-3/CPP32)	1426165_a_at
			5908	8427		Casp3 (Caspase-3/CPP32)	1449839_at
52	25	A	13415	8289		Fyn (p59fyn)	1417558_at
			4573	5247		Fyn (p59fyn)	1448765_at
48	25	A	3085	3048		Tec (Protein Tyrosine kinase, tec type I)	1460204_at
38	17	A	1091	740		Gng2 (G protein gamma-2 subunit)	1418451_at
			148	109		Gng2 (G protein gamma-2 subunit)	1418452_at
35	A	45	2573	1594		Plcb3 (Phospholipase C beta3)	1448661_at
34	A	27	683 1945	1038 2775	1017 1854	-	1451318_a_at 1425598 a at
			1940	2113	1004	- y · ·	142JJ90_a_al

Signal transduction

Chapter 3: Microarray-Based Studies of Antigen-Specific Splenic γδ T cell Responses Using Mice that are Transgenic for the G8 γδ TCR and are Deficient in RAG2

Introduction

The roles of $\gamma\delta$ T cells in the immune system have been difficult to ascertain and the majority of past studies were limited to the analysis of functions known to be carried out by lymphocytes. In addition, the scarceness of known $\gamma\delta$ TCR ligands made it difficult to study certain aspects of $\gamma\delta$ T cells during immune responses. For instance, an accumulation of $\gamma\delta$ T cells at a site of infection could indicate that the accumulating $\gamma\delta$ T cells were encountering and responding to a ligand at that site but could also indicate that the accumulating $\gamma\delta$ T cells merely happened to express a particular combination of homing receptors.

In order to understand how $\gamma\delta$ T cells contribute to the immune system, it was necessary to obtain a fuller picture of how these cells respond to the recognition of $\gamma\delta$ TCR ligands. The recognition of T10/T22 on splenocytes by splenic $\gamma\delta$ T cells was studied, in part, because 0.6 - 2% of $\gamma\delta$ T cells in normal mice recognize these molecules (Crowley, Fahrer et al. 2000) and because G8 $\gamma\delta$ TCR transgenic mice (Dent, Matis et al. 1990) were available, whose $\gamma\delta$ T cells recognized these molecules in an allele-dependent manner. Thus, in order to determine how naïve $\gamma\delta$ T cells respond to the recognition of $\gamma\delta$ TCR ligands, G8 BALB/c and G8 RAG2^{KO} BALB/c mice were further characterized, the expression of T10/T22 on different splenocytes was analyzed, and microarray experiments were performed that compared the mRNA transcripts of activated G8 RAG2^{KO} BALB/c $\gamma\delta$ T cells to those of naïve G8 RAG2^{KO} BALB/c $\gamma\delta$ T cells. Because G8 RAG2^{KO} BALB/c $\gamma\delta$ T cells were rare and because microarray experiments require large amounts of RNA, protocols were developed for analyzing the transcripts that are present in limited numbers of cells.

Materials and Methods

Details about the mice and the G8 $\gamma\delta$ T cell activation protocol can be found in the Materials and Methods section of Chapter 2.

T10/T22 Expression Analysis

The 7H9 monoclonal antibody was used (Crowley, Fahrer et al. 2000), which is capable of recognizing the T10 and T22 molecules but cannot distinguish between them. A streptavidin-APC conjugate was used to detect the biotinylated 7H9 antibody because APC is excited using a different laser than FITC, PE, and PI and, thus, the detected T10/T22 levels were not greatly affected by the detected FITC, PE, and PI levels.

Histology

Organs were removed from mice and embedded in OCT. $10 - 15 \mu m$ tissue sections were cut on a cryostat and placed onto Fisher SuperFrost Plus slides. The sections were air-dried and placed, two at a time, into 50 ml conical tubes containing a ball of Drierite and stored at -20°C until use.

For fixation, slides were immersed in -20°C acetone for 10 minutes, air dried for an additional 10 minutes, and placed into PBS. In order to block nonspecific binding of antibodies, sections were covered for an hour with at least 200 µl of a mixture of 2% BSA, 5% normal hamster serum, 5% normal mouse serum, and 10 µg/ml of anti-CD16/CD32 (FcBlock; BD Pharmingen). Thereafter, this mixture was poured off the slide and replaced by at least 200 µl of a similar mixture that was supplemented with labeled antibodies. These antibodies were usually used at a 1:100 dilution, which corresponded to a concentration of 2 µg/ml – 10 µg/ml. Finally, the sections were washed in DAPI-containing PBS and were covered with Fluoromount-G (Southern Biotechnology Associates, Inc.) and a cover glass.

Microarray Analysis Using Two Rounds Of *In Vitro* Transcription (IVT)

A published protocol that had been designed for cDNA microarrays (Wang, Miller et al. 2000) was adapted for probe-based Affymetrix microarrays. In short, firststrand synthesis was carried out on the RNA of about $1x10^{6}$ cells using two primers. One primer was composed of oligo-dT and a T7 RNA polymerase promoter (T7-(dT)₁₅ primer) and the other primer was a template-switch primer (TSP) whose complementary sequence could be incorporated at the 3' end of completed first strands. This was followed by second-strand synthesis where the complementary sequence of the templateswitch primer served as a binding site for that primer that was then elongated by a thermostable DNA polymerase. IVT was performed on the double-stranded cDNA and the resulting complementary RNA (cRNA) was reverse transcribed using random hexamers. The T7-(dT)₁₅ primer was then used for second-strand synthesis along with a thermostable polymerase in order to generate amplified cDNA. Subsequently, IVT was performed on the amplified cDNA in the presence of biotinylated ribonucleotides in order to generate amplified cRNA that was then analyzed using Affymetrix microarrays.

Microarray Analysis Using PCR-Based Amplification

Due to the low level of mRNA 5' end representation in the cRNAs produced by the previous protocol, a new protocol based on the SMART PCR cDNA synthesis kit (BD Clontech), the standard Affymetrix GeneChipTM cRNA synthesis protocol, and a published protocol (Wang, Miller et al. 2000) was used to make biotinylated RNA probes for microarray analysis. This protocol was composed of three major steps: (1) an initial double-stranded cDNA synthesis, (2) a PCR-based amplification, and (3) IVT.

For the synthesis of single-stranded cDNA, RNA was isolated from cells using Trizol (Invitrogen) where 1 μ l of 5 μ g/ μ l linear acrylamide (Ambion) was added to the aqueous phase prior to the addition of isopropanol in order to visualize the RNA pellet. The RNA pellet was air dried and resuspended in ddH₂O so that 1 μ l of RNA was derived from 10,000 cells. 9 μ l of RNA, equivalent to that obtained from 90,000 cells, was reverse transcribed by first adding 1 μ l of 0.5 μ g/ μ l T7-(dT)₁₅ primer, denaturing at 70°C for 5 minutes, snap cooling on ice, adding 12 μ l of a mix containing 4 μ l of 5x first-stand

buffer, 2 μ l of 0.1 M DTT, 2 μ l of 10 mM dNTPs, 1 μ l of 1 μ g/ μ l TSP, 1 μ l RNaseIN, and 2 μ l SuperScriptII, and incubating at 42°C for 90 minutes.

For the synthesis of double-stranded cDNA, 10 μ l of single-stranded cDNA was added to 90 μ l of a mix containing 10 μ l of Advantage PCR buffer (BD Clontech), 3 μ l of 10 mM dNTPs, 2 μ l of Advantage cDNA polymerase (BD Clontech), 1 μ l of RNaseH, 1 μ l of 1 μ g/ μ l T7 primer (same sequence as the T7-(dT)₁₅ primer without the (dT)₁₅), 1 μ l of 1 μ g/ μ l of TSP, and 72 μ l of ddH₂O. The sample was incubated at 37°C for 5 minutes, at 94°C for 2 minutes, at 65°C for 1 minute, and at 75°C for 30 minutes and, thereafter, the sample was subjected to 12 to 18 cycles of PCR with 1 minute denaturing at 94°C, 1 minute annealing at 65°C, and 10 minute elongating at 68°C.

To purify the double-stranded cDNA, 5 μ l of 1 M NaOH and 2 mM EDTA was first added and the sample was incubated at 65°C for 10 minutes to degrade residual RNA. 45 μ l of ddH₂O, 1 μ l of 5 μ g/ μ l linear acrylamide, and 150 μ l of phenol:chloroform:isoamyl alcohol (Ambion) were then added and mixed. The 300 μ l samples were transferred to pre-spun phase-lock light gel tubes (Eppendorf) and spun at 14,000 rpm for 5 minutes. The 150 μ l upper aqueous phase was collected and added to 150 μ l of 5 M ammonium acetate. 1 ml of 100% ethanol was added, mixed, and spun at 14,000 rpm for 20 minutes. The supernatant was removed and the pellet was washed twice by adding 500 μ l of 95% ethanol, spinning at 14,000 rpm for 6 minutes, and removing the supernatant. The pellet was air-dried and resuspended in 60 μ l of ddH₂O. To remove additional small molecules, a Bio-6 chromatography column (Bio-Rad) was pre-equilibrated with ddH₂O and the 60 μ l sample was applied to it, spun at 3,000 rpm for 4 minutes, and the 60 μ l eluted sample was collected. The sample was dried in a Speed-Vac and resuspended in 12 μ l of ddH₂O.

IVT was performed by mixing 2 μ l of 10x HY reaction buffer, 2 μ l of 10x biotinlabeled NTPs, 2 μ l of 10x DTT, 2 μ l of 10x RNase inhibitor mix, and 1 μ l of 20x T7 RNA polymerase (all from Enzo) and adding 11 μ l of the sample to it. The 20 μ l mix was incubated at 37°C for 5 hours with occasional mixing. The RNA was isolated in a total volume of 30 μ l from the sample using the RNeasy kit (Ambion) and the OD260/280 was determined using 5 μ l thereof. To concentrate the RNA by ethanol precipitation, 35 µl of ddH₂O, 60 µl of 5 M ammonium acetate, and 200 µl of 100% ethanol was added and mixed. The sample was placed at -20°C for overnight precipitation. The precipitated sample was spun at 14,000 rpm for 30 minutes at 4°C. The supernatant was removed and the pellet was washed twice with 500 µl of 80% ethanol and 14,000 rpm 5 minute spins. The supernatant was removed and the pellet was air-dried and resuspended in ddH₂O at a concentration of 0.6 µg/µl under the assumption that RNA recovery from precipitation was 100%. A fourth volume of fragmentation buffer (Affymetrix) was added and the sample was incubated at 94°C for 35 minutes. The fragmented RNA sample was submitted to the Stanford PAN facility for hybridization to Murine U74 and U74v2 GeneChipTM microarrays (Affymetrix).

G8 RAG2^{KO} BALB/c γδ T cell Activation for Microarray Analysis

Stimulator splenocytes were washed in Hank's Balanced Salt Solution (HBSS) to remove primary amine-containing compounds and then labeled in 10 ml of HBSS with 5 μ M 5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester (Molecular Probes), which is also known as CFDASE and CFSE, for 20 minutes at room temperature. The labeled cells, which fluoresced brightly in the FITC channel of a cell sorter, were washed three times with media, cultured for three hours, and washed again because they were otherwise found to transfer some of the dye to the responder cells. Thereafter, the stimulator and responder cells were combined and cocultured. Following the cocultures, the cells were placed on ice and stained with a PE-conjugated antibody to the $\gamma\delta$ TCR (GL3) and with propidium iodide. Alive PE⁺FITC⁻PI⁻ G8 RAG2^{KO} BALB/c $\gamma\delta$ T cells were subsequently sorted.

Results and Discussion

T10/T22 Expression is Cell Type and Strain Dependent

To identify which cells could potentially activate $\gamma\delta$ T cells, the expression of T10 and T22 was analyzed in different strains of mice. T10/T22 levels were found to be mouse strain and cell-type dependent. B10.BR mice were found to express the highest T10/T22 levels of any strain (*Figure 3.1A*). Unlike other strains tested, their NK cells and T cells expressed clearly-detectable levels above background. In addition, their CD11c⁺ Mac1⁺ dendritic cells expressed 10-fold higher levels than those of BALB/c or C57Bl/6 mice. This is interesting given that B10.BR splenocytes are less capable than C57Bl/6 splenocytes at activating G8 $\gamma\delta$ T cells.

The expression of T10/T22 was detected on granulocytes. In addition, a two-fold upregulation thereof could be observed after culturing them in the presence of bacteria for 2 hours (*Figure 3.1B*). $\gamma\delta$ T cells are known to play a role early during some infections. Perhaps the detection of T10/T22 on activated granulocytes plays a role in this process.

B cells were found to express some of the highest levels of T10/T22 and those in the blood expressed higher levels than those in the spleen (*Figure 3.1C*). In addition, higher levels were observed on rare CD19⁺ B220^{low} B cells that expressed CD5 and low levels of IgD (*Figure 3.1D*). Given that B cells are abundant in the spleen and given that B cells express some of the highest levels of T10/T22, B cells may be the targets of T10/T22-reactive $\gamma\delta$ T cells that comprise 0.6 – 2% of $\gamma\delta$ T cells in the spleen.

Histological Analysis of G8 BALB/c Mice

G8 BALB/c mice contain about as many $\gamma\delta$ T cells as $\alpha\beta$ T cells that appear to be naïve based on their cell-surface marker expression. For the most part, these $\gamma\delta$ T cells express the same G8 $\gamma\delta$ TCR. In order to get an understanding of where naïve $\gamma\delta$ T cells are found, the lymph nodes, thymuses, and spleens of G8 BALB/c mice were sectioned for histological analysis. In the spleen and lymph nodes, G8 $\gamma\delta$ T cells were found in the characteristic T cell areas of these organs along with $\alpha\beta$ T cells (*Figure 3.2A* and *B*). However, some $\alpha\beta$ T cells could also be observed inside the B cell areas while this was not the case for G8 $\gamma\delta$ T cells. The movement into the B cell areas is generally a characteristic of activated CD4⁺ $\alpha\beta$ T cells so that these cells can provide help to B cells that have the ability to recognize the same foreign protein as the T cells. Given that G8 $\gamma\delta$ T cells are not found in the B cell areas, this suggests that these $\gamma\delta$ T cells are still naïve and/or that their function is not to move into the B cell areas.

In the thymus, G8 $\gamma\delta$ T cells and $\alpha\beta$ T cells were distributed differently (*Figure 3.2C*). It is generally accepted that early thymocytes are found in the outer portion of the cortex while those in the later stages of development that are undergoing positive selection are found closer to the medulla. Negative selection appears to occur in the medulla that is heavily populated by MHC class II⁺ stromal cells. Staining for both the $\gamma\delta$ TCR and the $\alpha\beta$ TCR reveals that the $\gamma\delta$ TCR is expressed closer to the outer portion of the cortex than the $\alpha\beta$ TCR. This may be because the expression of the transgenic G8 $\gamma\delta$ TCR does not require rearrangement and thus the $\gamma\delta$ TCR could be expressed earlier than the $\alpha\beta$ TCR. In addition, while some $\gamma\delta$ T cells can be found in the medulla, this area is mostly occupied by $\alpha\beta$ T cells.

Gene Expression Comparisons between G8 BALB/c yo T cells and $\alpha\beta$ T Cells

The fact that G8 BALB/c mice had large numbers of $\gamma\delta$ T cells, that the transgenic $\gamma\delta$ T cells were probably naïve, that some $\alpha\beta$ T cells were probably not naïve, and that there was a subtle difference in the lymphoid organ distribution between $\gamma\delta$ T cells and $\alpha\beta$ T cells suggested that a comparison between $\gamma\delta$ T cells and $\alpha\beta$ T cells in these mice could give an indication of whether and how naïve $\gamma\delta$ T cells differ from $\alpha\beta$ T cells. For this reason, the transcripts expressed by G8 $\gamma\delta$ T cells and $\alpha\beta$ T cells were analyzed by microarray.

There were not many major differences between the transcripts expressed by $\gamma\delta$ T cells and $\alpha\beta$ T cells (*Figure 3.3*). However, the expression of some genes was found to

differ between naïve $\gamma\delta$ T cells and $\alpha\beta$ T cells and some of the differences were expected. For instance, G8 $\gamma\delta$ T cells do not, for the most part, express CD8 α and CD8 α expression was only found in the $\alpha\beta$ T cells. In addition, some of the differences supported the assertion that G8 $\gamma\delta$ T cells are naïve while some $\alpha\beta$ T cells are activated or memory cells. Transcripts for cell-surface markers expressed primarily by $\alpha\beta$ T cells included those for CD5, CD6, the activation marker CD44, the memory marker Klrg1 (Robbins, Terrizzi et al. 2003), and the chemokine receptor CXCR3. In addition, $\alpha\beta$ T cells preferentially expressed transcripts for Granzyme B, CCL5/RANTES, Ki-67, Syntaxin 11, Integrin β 1, Bcl2, Schlafen2, and BTLA. On the other hand, G8 $\gamma\delta$ T cells preferentially expressed transcripts for Endoglin, Myb, and the stem-cell marker Sca-1.

Analysis of the G8 RAG2^{KO} BALB/c Mouse

The use of G8 BALB/c mice as a source of $\gamma\delta$ T cells for studying $\gamma\delta$ T cell activation has a few difficulties. First, allelic exclusion is far from perfect for T cells and it is possible to find T cells in G8 BALB/c mice that express both $\gamma\delta$ and $\alpha\beta$ TCRs. Second, in order to study the activation of G8 $\gamma\delta$ T cells by primary cells, it is necessary to use cells derived from *b* or *k* haplotype-expressing mice because no T10/T22^bexpressing transgenic BALB/c mice are available. Unfortunately, G8 BALB/c mice express $\alpha\beta$ T cells and B cells, of which some may be alloreactive against these haplotypes. Third, while it is technically possible to deplete splenocytes of $\alpha\beta$ T cells and B cells through the use of magnetic beads and antibodies directed against the $\alpha\beta$ TCR and CD19, the fact that this involves $\alpha\beta$ TCRs being bound to magnetic beads leads to the possibility that $\alpha\beta$ T cells will become activated. Negative selection would need to be 100% efficient in order not to contaminate $\gamma\delta$ T cells with activated $\alpha\beta$ T cells. Fourth, the commonly-used anti- $\gamma\delta$ TCR antibodies lead to the activation of positivelyselected $\gamma\delta$ T cells in culture based on CD69 expression; especially, when used in conjunction with magnetic beads.

G8 BALB/c mice that are deficient in RAG present a solution for generating a source of $\gamma\delta$ T cells with a known specificity in the absence of $\alpha\beta$ T cells and B cells. Although, it should be noted that it has recently been reported that mice that are deficient in $\alpha\beta$ T cells show some abnormalities with respect to the function of their $\gamma\delta$ T cells (Pennington, Silva-Santos et al. 2003; Silva-Santos, Pennington et al. 2005). RAG2deficient mice cannot rearrange their TCR and immunoglobulin loci and this leads to a complete lack of $\alpha\beta$ T cells and B cells. Consequently, the thymuses of G8 RAG2^{KO} BALB/c mice are very small (*Figure 3.4A*), the mesenteric lymph nodes are barely visible (*Figure 3.4B*), and the lack of B cells also leads to the absence of Peyer's patches on the small intestine.

A histological analysis of the spleens of G8 RAG2^{KO} BALB/c mice revealed that most of the $\gamma\delta$ T cells were found in small areas of white pulp around the central arterioles. However, there were some abnormalities because a stain for CD11c revealed that dendritic cells were primarily found surrounding the T cell areas (*Figure 3.4C*) instead of mostly overlapping with them, as would be the case in normal mice. This was similar to what had been reported for B cell knockout mice (Crowley, Reilly et al. 1999), where marginal zone dendritic cells were found surrounding the T cell areas.

Interestingly, it was possible to detect structures resembling lymphocyte-filled villi (*Figure 3.4D*) that have been reported to be the rat equivalent of murine cryptopatches that are involved in the development of intestinal intraepithelial lymphocytes. $\gamma\delta$ IELs were detected and, similar to IELs in conventional mice, these cells expressed low levels of the activation marker CD69.

Splenic γδ T cells Activate in Response to T10/T22^b-Expressing Cells

The spleen was chosen as the source of $\gamma\delta$ T cells from G8 RAG2^{KO} BALB/c mice because it contained the second largest amount of $\gamma\delta$ T cells next to the IEL compartment and because IELs appeared to be constitutively activated as was shown in Chapter 2. However, it was only possible to isolate on the order of one million $\gamma\delta$ T cells from the spleen. In order to activate G8 $\gamma\delta$ T cells, the stimulator cells have to express T10/T22 of an appropriate haplotype and should not be alloreactive against the *d* haplotype. Thus, H2^{b/d} BALB/c spleen-derived stimulator cells were chosen to serve as stimulator cells and were added in a 5-fold excess to ensure that G8 RAG2^{KO} BALB/c $\gamma\delta$ T cells had access to ample $\gamma\delta$ TCR ligand-expressing cells. As expected, G8 $\gamma\delta$ T cells incubated in the presence of H2^b-expressing splenocytes expressed the very early activation marker CD69 and exhibited a striking decrease in $\gamma\delta$ TCR levels, where the most severe reduction was observed after 1 day of activation and where levels returned to near starting levels after 2 days of activation (*Figure 3.5A* – *C*). Activated $\gamma\delta$ T cells also upregulated their levels of CD44 (*Figure 3.5D*), increased in cell size (*Figure 3.5E*), and divided twice during four days of activation (*Figure 3.5F*).

G8 γδ T cell Activation Using Splenocytes of Other Strains

B10.BR and H2^{k/d} BALB/c were also analyzed for their ability to activate G8 $\gamma\delta$ T cells. B10.BR mice have the *k* haplotype for their MHC class I and II molecules but are reported to have T18^a. Cells from B10.BR mice were originally used to create the G8 cell line and are thus known to activate G8. However, their alleles of T10 and T22 are, as yet, unknown. H2^{k/d} BALB/c mice are a cross of BALB.K (T18^b) and BALB/c (T18^c) mice. BALB.K mice are congenic for the *k* haplotype MHC locus of C3H/He mice that, while expressing T18^b, should not contain a functional T22 gene and, thus, should only express the inducible T10. BALB/c mice also do not express a functional T22 gene. H2^{k/d} BALB/c mice can thus be used to analyze the effects of T10 expression in the absence of T22.

Unlike splenocytes from C57Bl/6 mice or H2^{b/d} BALB/c mice, neither B10.BR (*Figure 3.6A*) nor H2^{k/d} BALB/c splenocytes (*Figure 3.6B*) led to substantial $\gamma\delta$ TCR downregulation. In addition, not all $\gamma\delta$ T cells were CD69⁺ after 24 hours suggesting that the cells capable of activating G8 $\gamma\delta$ T cells were less abundant in these mice than in other strains of mice and/or that the T10 and T22 alleles expressed by these mice did not stimulate as well. Given that the original studies of G8 showed that B10.BR "APCs" are very effective at activating G8 and given that G8 activation by B10.BR and H2^{k/d} BALB/c lead to similar outcomes, the most-likely explanation is that T22 is not recognized in B10.BR and that, in both strains, the inducible T10 molecule is being recognized.

Identifying Novel Responses to Activation Using Microarrays

The expression of CD69 accompanied by blasting and cell division clearly indicated that the G8 $\gamma\delta$ T cells became activated in cocultures with T10/T22^b-expressing splenocytes. Thus, this system represented an excellent way determine additional changes that take place following $\gamma\delta$ T cell activation.

12 hour and 4 day timepoints were chosen for microarray analysis where G8 $\gamma\delta$ T cells that had been incubated in the presence of T10^b, T22^b, and T10^d (H2^{b/d} BALB/c stimulator cells) were compared to G8 $\gamma\delta$ T cells that had been incubated in the presence of only T10^d (BALB/c stimulator cells). The 12 hour timepoint was chosen since this timepoint occurs before G8 $\gamma\delta$ T cell division, allows for sufficient time for activation-dependent mRNA synthesis, and minimizes the effects of activation-induced proteins acting back on $\gamma\delta$ T cells, directly or indirectly. The 4 day timepoint was chosen to look at longer term changes to $\gamma\delta$ T cells in culture.

Following the 12 hour and 4 day cocultures, G8 $\gamma\delta$ T cells were sorted. Yields were rather low and only on the order of 10⁵ cells could be obtained. This made it impossible to use the conventional Affymetrix GeneChip protocol to generate the biotinylated cRNA probes for analysis. Therefore, a PCR-based protocol was designed that was based on the SMART PCR cDNA synthesis kit (BD Clontech), the standard Affymetrix GeneChipTM cRNA synthesis protocol, and a published protocol (Wang, Miller et al. 2000).

The use of this protocol had a few caveats because it was not clear whether all mRNAs would be reverse transcribed and amplified equally well in all samples being compared. First, it relied on the reverse transcriptase SuperScriptII's tendency to incorporate extra cytosines upon reaching the end of an mRNA and this may be dependent upon the presence of a 7-methylguanosine cap. Thus, even though the mRNA sequences detected by the Affymetrix microarrays were biased to the 3' ends in order to be more tolerant of mRNA degradation and secondary structures, it may have been difficult to detect cap-less mRNAs and mRNAs whose secondary structures would have prevented the reverse transcriptase from reaching the 5' end. Second, this protocol relied on PCR-based amplification of cDNA using the same set of primers for each gene. This

66

assumed that the amplification of one type of cDNA would not affect the amplification of another and that amplification would be equally efficient for all transcripts, for all cycles. Thus, validation of gene expression will be essential.

For the 12 hour timepoint, 500,000 G8 $\gamma\delta$ T cells were sorted from the BALB/c cocultures and 287,000 G8 $\gamma\delta$ T cells were sorted from the H2^{b/d} BALB/c cocultures. For the 4 day timepoint, 230,000 $\gamma\delta$ T cells were sorted from the BALB/c cocultures and 528,000 $\gamma\delta$ T cells were sorted from the H2^{b/d} BALB/c cocultures. The cDNA of these samples was amplified using 12 cycles of PCR. A gel analysis of these amplified samples revealed that the 4 day sample containing ligand-activated $\gamma\delta$ T cells had, by far, the most amount of product. This was also observed when quantifying the cRNA after in vitro transcription that yielded between 5 and 11 µg for the other samples and 16 µg for the 4 day H2^{b/d} BALB/c sample using only half as much cDNA. Thus, this sample contained about 3- to 6-fold more mRNA than the other samples. The 12 hour activated sample yielded twice as much product from half as many cells as the 12 hour naïve sample suggesting that 12 hours of activation led to 4-fold higher levels of mRNA than 12 hours of culture.

An additional 12 hour timepoint experiment was performed to determine if BALB/c cells affect G8 $\gamma\delta$ T cell activation by H2^{b/d} BALB/c cells. G8 $\gamma\delta$ T cells were incubated with BALB/c splenocytes, H2^{b/d} BALB/c splenocytes, or a 1:1 mixture thereof. 500,000 G8 $\gamma\delta$ T cells were sorted from the BALB/c coculture, 176,000 G8 $\gamma\delta$ T cells were sorted from the H2^{b/d} BALB/c coculture, and 255,000 G8 $\gamma\delta$ T cells were sorted from the mixed coculture. In order to increase the future *in vitro* transcription yields above 5 µg, 18 cycles, as opposed to 12 cycles, of PCR were performed on the cDNA of 40,000 cells. The *in vitro* transcription yielded about 10.8, 16.4 and 13.8 µg of cRNA for the BALB/c, H2^{b/d} BALB/c, and mixed samples, respectively.

As shown in *Figure 3.7A*, the expression levels 12 hours and 4 days in the absence of activation correlated reasonably well with one another. On the other hand, activated $\gamma\delta$ T cells showed more differences 12 hours and 4 days after activation (*Figure 3.7B*). For instance, IFN γ was primarily expressed in the 12 hour sample while CTLA-4 and Ki-67, on the other hand, were more abundant in the 4 day sample. There were large

differences between 4 day naïve and 4 day activated $\gamma\delta$ T cell samples (*Figure 3.7C*) as well as between 12 hour naïve and 12 hour activated samples (*Figures 3.7D* and *3.7E*).

The activation of G8 $\gamma\delta$ T cells led to the expression of large numbers of genes and also led to the downregulation of others. For instance, the expression of CD69 was induced and the expression of α_V integrin (CD51) increased while the expression of β_7 integrin and L-selectin was reduced (*Table 3.1*).

γδ T cell Activation Leads to Changes in TCR-Associated Transcripts

The downregulation of $\gamma\delta$ TCRs from the cell surface was accompanied by a downregulation of transcripts encoding the components of the $\gamma\delta$ TCR (*Table 3.2*). After 12 hours of activation, there were reductions in transcripts encoding the $\gamma\delta$ TCR and CD3. The SNARE protein Syntaxin 11 (Valdez, Cabaniols et al. 1999) was expressed after activation and may have played a role in the degradation of activated TCRs that had been endocytosed.

On the other hand, transcript levels of Lck remained mostly unchanged following activation and those of Fyn and Zap70 increased. Lck and Fyn are Src-family kinases that are important in TCR signaling because they phosphorylate CD3, which leads to the recruitment of Zap70 and the activation thereof by the Src-family kinases. The activation of Zap70 has been found to lead to the phosphorylation of Lat, Lcp2/Slp76, and Vav1 whose transcripts did not change greatly following activation.

The loss of TCR expression and enhancement of Zap70 expression suggests that the reduced likelihood of generating a signal may be coupled with an increased ability to signal or prolong signaling. In support of the latter, there is a reduction in diacylglycerol kinase alpha transcripts. This enzyme converts diacylglycerol (DAG) that is produced by phospholipase C gamma (PLC γ) into phosphatidic acid. A reduction in this enzyme should prolong the effects of DAG-dependent signaling, such as the activation of protein kinase C theta (PKC θ). On the other hand, there is also a reduction in transcripts for an ER calcium channel, inositol 1,4,5-triphosphate receptor 5. This would suggest that future signals generated by the TCR may be less likely to trigger strong calcium signals and, in turn, less likely to activate calcineurin. Complexes of the adapter proteins Lat and Slp76 allow for the accumulation of Tec family kinases, including Itk. While transcripts for Itk are not greatly changed after activation, those for Tec and, most notably, Txk/Rlk are. Txk phosphorylation induces the expression of IFN γ (Kashiwakura, Suzuki et al. 2002) to whose promoter it can bind directly (Takeba, Nagafuchi et al. 2002). The reduction of Txk levels may serve to reduce the intensity of its signal. IFN γ production increases between 12 and 24 hours of activation so the reduction of Txk expression does not immediately cause IFN γ production to stop. However, $\gamma\delta$ T cells that have undergone 4 days of activation no longer express IFN γ . The reduction of Txk may play a role in that event.

TCR activation leads to synapse formation where proteins expressing Pleckstrinhomology (PH) domains, which bind phosphatidylinositol 4,5-biphosphate (PIP2) and some variants thereof with a high affinity (Paterson, Savopoulos et al. 1995), have been found to accumulate (Huppa, Gleimer et al. 2003). However, after activation, synapse formation needs to end. Along those lines, the expression of Pitpnc1/rdgB-beta, a member of the phosphatidylinositol transfer protein family, is reduced, and transcripts for Dock2 (Sanui, Inayoshi et al. 2003), Evl, and Fyb (Krause, Sechi et al. 2000) are also found to decrease following activation. Additionally, transcripts of the PH domaincontaining, Rho-GTPase activating protein family members ArhGAP9 (Furukawa, Kawasoe et al. 2001) and ArhGAP15 (Seoh, Ng et al. 2003) are reduced after activation, and transcripts for ArhGEF18 (Niu, Profirovic et al. 2003) disappear.

γδ T cell Activation Leads to Changes in the NF-κB-Associated Transcripts

TCR signaling is coupled to NF- κ B activation through Malt1 and its associations with Bcl10 and Card11 (Carma1) (Che, You et al. 2004). NF- κ B (Nfkb1; p50) is a member of the Rel family of transcription factors that is normally bound to I κ Bs that keep it in an inactive state outside of the nucleus. An additional inhibitor, Tnip2, appears to work by binding to A20 (Van Huffel, Delaei et al. 2001) and/or by blocking the interaction of RIP with I κ K γ (Liu, Yen et al. 2004). I κ kinases (I κ Ks) that have been activated by PKC θ phosphorylate I κ Bs, which then causes these I κ Bs to become ubiquitinated and subsequently destroyed. This, in turn, allows the now uninhibited NF- κ Bs to translocate to the nucleus and promote the expression of genes, such as IL-2.

Genes associated with the NF- κ B pathway exhibited changes in expression following activation (*Table 3.3*) and suggest that the NF- κ B pathway may be reinforced after activation. Following activation, Malt1 and NF- κ B transcripts were increased, suggesting that there may be an increased ability to express NF- κ B-dependent genes following activation because extra unbound NF- κ B would be expected to act immediately as a transcription factor. However, transcripts for its inhibitors Tnip2 (ABIN-2), I κ B α (Nfkbia), I κ B β (Nfkbib), and I κ BNS were also increased, suggesting that increased NF- κ B levels are balanced by increased inhibitor levels. In addition, the expression of I κ K-i (Ikbke), which phosphorylates inhibitors of NF κ B in order to activate NF- κ B, was decreased, suggesting that it may become more difficult to initiate the NF- κ B pathway. The induction of I κ BNS has also been observed on thymocytes following TCR ligation that leads to negative selection (Fiorini, Schmitz et al. 2002).

γδ T cell Activation Leads to the Expression of Transcripts that are Associated with

Effector Functions

The activation of $\gamma\delta$ T cells led to the expression of transcripts for proteins that have direct effects on other cells (*Table 3.4*). For instance, transcripts for Granzyme B appear following activation and are very abundant. Granzyme B is a serine protease that is capable of initiating apoptosis in target cells. In order to protect themselves from the effects of Granzyme B, cytotoxic lymphocytes are known to express Serpinb9 (PI-9), a serine proteinase inhibitor (Sun, Bird et al. 1996). Serpinb9 transcripts were detected in $\gamma\delta$ T cells following activation. While $\gamma\delta$ IELs were found to express abundant transcripts for Granzymes A and B, Granzyme A expression was not detected 12 hours after activation and low amounts were detected after 4 days of activation. Granzyme B expression has been reported to be a marker of antigen-specific T cell activation (Jacob and Baltimore 1999). However, 4 day cultures of $\gamma\delta$ T cells in the absence of T10/T22^b were found to express Granzymes A and B and Serpinb9. The expression of these genes in what should have been naïve cells suggests that either T10^d can be recognized by G8 $\gamma\delta$ T cells or that there are antigen-unspecific ways to activate $\gamma\delta$ T cells.

It addition to Granzyme B, lymphocytes can also induce apoptosis on target cells through the expression of Fas ligand (FasL). FasL-expression is upregulated by the expression of Pdcd11 (Alg-4) (Lacana and D'Adamio 1999), whose transcripts were detected following activation. Strangely, both $\gamma\delta$ and $\alpha\beta$ T cells isolated from a normal G8 mouse appeared to express Pdcd11 similarly so the expression thereof is not necessarily an indicator of FasL expression.

Activated $\gamma\delta$ T cells may also express antibacterial genes. Transcripts for Pla2g12a, group XIIa Phospholipase A2, were increased after activation. Phospholipases catalyze the release of lipids from phospholipids and some of the secreted forms have been shown to exhibit bactericidal activity against gram-positive bacteria. The human homolog of Pla2g12a has been found to be bactericidal against the gram-negative bacterium *E. coli* (Koduri, Gronroos et al. 2002). Thus, activated $\gamma\delta$ T cells may produce bactericidal proteins. CD4⁺ Th2 cells, as opposed to CD4⁺ Th1 cells, have also been observed to upregulate their levels of Pla2g12a in response to anti-CD3 (Ho, Arm et al. 2001). Given that activated $\gamma\delta$ T cells express large amounts of IFN γ , a Th1 cytokine, it is interesting that they also express a molecule associated with Th2 responses.

Finally, activated $\gamma\delta$ T cells upregulated their expression of endothelial cell growth factor 1 (Ecgf1) and expressed the endothelin converting enzyme Ece1. This enzyme activates endothelin, which acts as a potent vasoconstrictor. Before activation, $\gamma\delta$ T cells also expressed transcripts for Endoglin, a marker of endothelial cells that serves as an auxiliary receptor for the TGF β -related family of cytokines. Endoglin expression has also been found on hematopoietic stem cells (Chen, Li et al. 2002). However, I have never managed to stain $\gamma\delta$ T cells for Endoglin with the available antibody.

γδ T cell Activation Leads to Changes in Cytokine-Related Transcripts

The activation of $\gamma\delta$ T cells led to the production of cytokines and associated genes (*Table 3.5*). One of the most upregulated genes following activation was IFN γ

whose production is characteristic of Th1 responses. IFN γ plays an important role in antiviral immunity and signals through Jak1. The effects of IFN γ may have led to the expression of some genes including those encoding Isg20, which degrades RNA (Nguyen, Espert et al. 2001), and Icsbp1/IRF-8 (Tsujimura, Nagamura-Inoue et al. 2002), which is a transcriptional regulator that has been found to downregulate the expression of the anti-apoptotic molecule Bcl-2 (Burchert, Cai et al. 2003). The expression of IFN γ may have also led to the downregulation of responses to IFN γ by G8 $\gamma\delta$ T cells since transcripts of Jak1 decreased after activation.

In addition to IFN γ , transcripts for TNF α appeared following activation. TNF α is capable of causing cell death. The expression of TNF α and FasL has been found to be dependent on the early growth response (Egr) family of proteins (Droin, Pinkoski et al. 2003) and increases in transcripts for Egr-1, Egr-2 and Egr-3 were detected following activation. Transcripts for Lymphotoxin α (TNF β) also appeared following activation.

Activated $\gamma\delta$ T cells may also be subject to altered responses to cytokines. Transcripts for Cish (Cis) increased after activation and this protein has been found to associate with phosphorylated cytokine receptors though its SH2 domain whereby it prevents the binding of signaling molecules. While Cish transcripts increased, transcripts for Socs3, which negatively regulates Jaks, decreased.

In addition to being subject to altered responses to cytokines, $\gamma\delta$ T cells may also be subject to altered responses to chemokines. Transcripts for the GTPase-activating protein Rgs16 (De Vries, Zheng et al. 2000; Hollinger and Hepler 2002; Lippert, Yowe et al. 2003) were barely detected prior to activation but became some of the most abundant transcripts after activation. Rgs16 may play a role in desensitizing the activated $\gamma\delta$ T cells to the chemokines they produce and in preventing the activated $\gamma\delta$ T cells from straying too far away from where they became activated. The expression of Rgs16 may be an indirect effect of $\gamma\delta$ T cell activation because its expression can be induced through IL-2 (Beadling, Druey et al. 1999) and IL-2 was found in the supernatants of cultures after $\gamma\delta$ T cell activation. Rgs14 transcripts behaved the opposite way by exhibiting lower expression after activation. $\gamma\delta$ T cells can be cultured with the addition of IL-2 and in some cases IL-7. IL-7 has been reported to be a cytokine necessary for the growth of naïve and memory T cells while IL-2 works well for the growth of activated cells. Activation of G8 $\gamma\delta$ T cells led to a reduction in transcripts for the IL-7 receptor and corresponding reductions in the cellsurface levels thereof have been observed. Transcripts for the IL-6 receptor α chain, IL-10 receptor β chain, IL-17 receptor, and IL-18 receptor 1 were also reduced while transcripts for the IL-2 receptor β chain were increased following activation. It was not possible to detect the IL-2 receptor α chain, which leads to high affinity IL-2 binding, using the PCR-based amplification of cDNA. However, it was possible to detect it using the standard Affymetrix cRNA synthesis protocol using bead-selected $\gamma\delta$ T cells two days after activation. This suggests that activated $\gamma\delta$ T cells lose their responsiveness to IL-7 and perhaps other cytokines while increasing their ability to detect IL-2.

Additional changes to cytokine-related genes included those to IL-16, Gpr65, Gadd45b, Irf4, and Gfi1. Activated $\gamma\delta$ T cells lost their expression of IL-16, a chemokine for CD4⁺ T cells (Lynch, Heijens et al. 2003), but increased their expression of Gpr65 (Gpcr25; TDAG8), a receptor for the glycosphingolipid psychosine. Transcripts for Gadd45b increased after activation and its expression has been found to be required for a variety of T cell responses including cytokine production (Lu, Ferrandino et al. 2004). Irf4, a transcriptional regulator, was expressed following activation. Irf4 expression in Jurkat cells has been reported to lead to the expression of IL-2 as well as the Th2 cytokines IL-4, IL-10, and IL-13 and may bind cooperatively to the IL-2 and IL-4 promoters with NFATc1 (Hu, Jang et al. 2002). In addition, Irf4 may enhance Fasmediated apoptosis (Fanzo, Hu et al. 2003) but has also been observed to be antiapoptotic (Lohoff, Mittrucker et al. 2004). The expression of Gfi1, a Stat6-dependent transcriptional repressor, was upregulated after activation and this protein has been found to inhibit apoptosis and promote the growth of Th2 cells (Zhu, Guo et al. 2002) and has now been shown to prevent the proliferation of hematopoietic stem cells (Hock, Hamblen et al. 2004).

γδ T cell Activation Leads to Increased Amounts of Transcripts Associated with

Protein Synthesis

In order to increase translation, $\gamma\delta$ T cell activation resulted in the expression of genes associated with ribosome production and protein synthesis (*Table 3.6*). Ribosome synthesis takes place in nucleoli, and transcripts for nucleolar proteins were also more abundant following activation. Transcripts for proteins involved in nuclear mRNA splicing were increased, as were those for translation initiation factors, translation elongation factors, and translation termination factors. Transcripts for enhancing transcription and translation appeared following activation. Increased protein production also requires increased amounts of tRNA and some transcripts for enzymes used in tRNA formation were upregulated.

In addition to upregulating the expression of genes necessary for increased protein synthesis, $\gamma\delta$ T cells also upregulated the expression of genes necessary for the proper folding of these proteins (*Table 3.7*) such as chaperones and heat shock proteins (HSPs). Transcripts for some proteins that interact with HSPs were also upregulated as were those for proteins that thread other proteins into mitochondria.

 $\gamma\delta$ T cell activation led to an increase in proteins that are important in nuclear import (*Table 3.8*). Importins bind to and serve as carriers for proteins with nuclear import signals in the cytoplasm that are destined for the nucleus. Once inside the nucleus, Ran-GTP binds to protein/carrier complexes and leads to their dissociation. In order to keep Ran-GTP in the nucleus and Ran-GDP in the cytoplasm, the RanGEF Chc1 (Rcc1) is found in the nucleus while RanGAP is found in the cytoplasm. Ranbp1, which binds to Ran and enhances the activity of RanGAP, is also found in the cytoplasm. The expression of Importin 4 (Ipo4; RanBP4) and Importin 7 (Ipo7/Imp7), Ran, Chc1, Ranbp1, and Nup62, a nucleoporin, was increased after $\gamma\delta$ T cell activation.

γδ T cell Activation Leads to Changes in Cell Proliferation- and Apoptosis-Related Transcripts

The activation of $\gamma\delta$ T cells led to the expression of both pro- and anti-apoptotic molecules (*Table 3.9*). Apoptotic cells can be stained using Annexin V because it binds to phosphatidylserine that appears on the cell surface during apoptosis. Transcripts for Phospholipid scramblase (Plscr1) were detected following activation. This enzyme is capable of moving phospholipids between lipid bilayers and may be responsible for the appearance of phosphatidylserine on the surface of apoptotic cells. However, it does not appear that all activated $\gamma\delta$ T cells undergo apoptosis because some of these cells blast and divide and the expression of Myc was increased after activation. Myc is an important oncogene and it can regulate the expression of numerous growth-related genes.

When blasting and dividing, $\gamma\delta$ T cells are expected to express cell cycleassociated proteins. In fact, transcripts for cell-cycle associated proteins, such as those for Chc1 (*Table 3.8*), Cyclin D2, Pcna, Cdkn1a (CIP1), and Cdc34, were all increased following activation. On the other hand, the expression of Cdc25b was lost after activation.

Increased expression of JunB was observed following activation and was accompanied by increased expression of the transcription factor Atf3. In the absence of c-Jun or JunB, Atf3 forms a homodimer that represses transcription (Chen, Liang et al. 1994). On the other hand, Atf3 can form a heterodimer with JunB that activates transcription (Hsu, Bravo et al. 1992). Thus, the expression of both JunB and Atf3 suggests that the resulting heterodimer should promote transcription.

Bcl-2 and Bcl211 (Bcl-XL) are anti-apoptotic molecules. After activation, the expression of Bcl211 was increased. Bcl211 prevents the activation of caspases by preventing the release of cytochrome c (Cycs), whose expression was increased after activation, from mitochondria.

Additionally, increases in expression following activation were observed with Apex1, Dusp2, Ier3, Mapk6 (Erk3), Pinx1, and Ssrp1, and transcripts of Nr4a1 (Nur77) and the related Nr4a2 (Nurr1) appeared following activation while those for Pdcd4 were reduced.

γδ T cell Activation Leads to Changes in the Wnt Signaling Pathway

The activation of $\gamma\delta$ T cells led to a reduction in genes associated with Wnt signaling (*Table 3.10*). Wnt signaling revolves around the stabilization of β -catenin (Catnb) and is important in early T cell development. Normally, a complex of Glycogen synthase kinase-3 beta (GSK-3 β ; Gsk3b), Axin and Adenomatous polyposis coli (Apc) phosphorylates β -catenin, which leads to its degradation. In the absence of GSK-3 β , β -catenin can accumulate and interact with transcription factors like LEF (Lef1) and TCF-1 (Tcf7), which leads to gene expression, including that of Cyclin D2. In addition to these proteins, numerous other proteins act to enhance or repress parts of this signaling pathway.

Ruvbl1 (Pontin52), binds to β -catenin and Lef1 and Tcf7 (Bauer, Huber et al. 1998) and integrin-linked kinase (Ilk) has been found to allow β -catenin to accumulate in the nucleus and interact with Lef1. Transcripts for Ruvbl1 were increased after activation suggesting that the ability of β -catenin to interact with Lef1 and Tcf7 was enhanced following $\gamma\delta$ T cell activation. On the other hand, Ilk levels were found to decrease following activation, suggesting that the stabilization of β -catenin is reduced following $\gamma\delta$ T cell activation.

Transcripts for Frat2 were reduced 12 hours after activation and transcripts for Frat1 were lost in one experiment and not detected in another. Frat2 is a homolog of Frat1 and both proteins are capable of binding to GSK-3 β and Dishevelled. This leads to the stabilization of β -catenin, which can then associate with transcription factors like Lef1 and Tcf7. It has been found that a carcinoma cell line NT2/D1 that is induced to differentiate by adding retinoic acid also downregulates Frat2 (Freemantle, Portland et al. 2002). However, the upregulation of Frat1 and Frat2 is often observed in cancers where it promotes the accumulation of β -catenin. Given that Frat1, Frat2, and Ilk enhance the accumulation of β -catenin, reduced levels of these molecules may lead to a requirement for stronger Wnt signals following activation because there would be increased phosphorylation of β -catenin. However, transcripts for GSK-3 β were also reduced after activation, suggesting that $\gamma\delta$ T cell activation may induce a reduction in the entire pathway.

In addition to the reduction in Frat2, Lef1 and Tcf7 levels were also greatly reduced following activation. Both of these proteins play an important role in T cell development (Staal and Clevers 2000). Similar to the loss of IL-7 receptor, the reduction in Frat2, Lef1, and Tcf7 indicates that the activation of G8 $\gamma\delta$ T cells appears to change their requirements for survival.

Axin is often found downregulated in human hepatocellular carcinomas (HCCs), suggesting that these should exhibit increased signaling through the Wnt pathway due to a decreased phosphorylation and breakdown of β -catenin. It has been reported that the forced expression of Axin in the colon-cancer cell line LoVo leads to the expression of Axud1 (Axin1 up-regulated), suggesting that Axud1 expression is a sign of reduced signaling through the Wnt pathway (Ishiguro, Tsunoda et al. 2001). Axin appears to be only minimally downregulated following the activation of $\gamma\delta$ T cells. However, Axud1 transcripts are increased after activation. Assuming that Axud1 is expressed in the absence of Wnt signaling, this suggests that Wnt signaling is reduced following the activation of $\gamma\delta$ T cells. Along those lines, $\gamma\delta$ IELs, which appear to be constitutively-activated $\gamma\delta$ T cells, were previously found to express much lower levels of Lef1 and Tcf7 than mesenteric lymph node CD8⁺ $\alpha\beta$ T cells.

γδ T cell Activation Reduces the Expression of Krüppel-like Factors

Krüppel-like factors are related zinc-finger proteins. Constitutively-activated $\gamma\delta$ IELs were found to express lower levels of some Krüppel-like factors than mesenteric lymph node CD8⁺ $\alpha\beta$ T cells. Similarly, $\gamma\delta$ T cell activation led to the loss of expression of the Krüppel-like factors Klf3 and Klf7 and the expression of Klf13 was reduced (*Table 3.11*). Klf3 has been reported to be a strong transcriptional repressor in conjunction with CtBP2 (Turner and Crossley 1998). Klf7 has been shown to play a role in stopping cell-cycle progression by promoting G₁ arrest (Laub, Aldabe et al. 2001). Klf13, also known as RFLAT-1, is involved in the expression of RANTES and is translationally controlled.

γδ T cell Activation Induces the Expression of Some Cell-Surface Molecules

In order to identify activated $\gamma\delta$ T cells that are participating in immune responses, it is helpful to know how these activated $\gamma\delta$ T cells differ phenotypically from resting $\gamma\delta$ T cells. The ability to detect activated $\gamma\delta$ T cells could help in the identification of ligands that activate $\gamma\delta$ T cells. The microarray data was thus analyzed for the expression of cell-surface markers following activation.

It addition to the expression of the very early maker of activation, CD69, $\gamma\delta$ T cell activation led to the upregulation of BTLA, CD5 (Ly1), CD6, CD160, CTLA-4, Crtam, PD-1 (Pdcd1), Lag-3, and Sca-1/Ly6A (*Table 3.12*). All of these molecules, except for maybe CD160 and Crtam, appear to be involved in the attenuation of immune responses – mostly, through the recruitment of phosphatases that attenuate kinase cascades.

CD5 has been shown to lower T cell activation and the thymocytes of CD5deficient mice exhibit more extreme levels of activation in response to CD3 stimulation (Tarakhovsky, Kanner et al. 1995). In addition, CD5-deficient peripheral T cells proliferate more than normal T cells following activation (Tarakhovsky, Kanner et al. 1995; Pena-Rossi, Zuckerman et al. 1999). It has also been found that T cells that are cultured in the absence of MHC show reduced levels of CD5 expression (Smith, Seddon et al. 2001). It has thus been postulated that CD5 helps tune TCR signaling in cases where the TCR can signal (Azzam, DeJarnette et al. 2001) and that it may play a similar role in some autoreactive B-1 B cells. It has been proposed that this is accomplished by recruiting the tyrosine phosphatase SHP-1.

CD6 and CD5 are closely related and map to nearly-adjacent loci. CD6 becomes phosphorylated after TCR ligation and may function as a co-stimulatory molecule but might also help prevent the apoptosis of cells following activating stimuli.

Stains for CD5 expression revealed that moderate levels are found on G8 $\gamma\delta$ T cells and that their activation leads to higher levels of expression. While CD5 levels of naïve G8 $\gamma\delta$ T cells were lower than those of $\alpha\beta$ T cells, the fact that CD5 is expressed by naïve $\gamma\delta$ T cells suggests that CD5 would not be exceptionally suitable for the identification of activated $\gamma\delta$ T cells.

CTLA-4 is an important molecule involved in the attenuation of TCR signals. Mice deficient in CTLA-4 develop large numbers of autoreactive T cells, which suggests that CTLA-4 attenuates TCR signals (Waterhouse, Penninger et al. 1995). CTLA-4 binds B7-1 (Linsley, Brady et al. 1991) and B7-2 (Freeman, Gribben et al. 1993), which ensures that it can both associate with molecules on the antigen presenting cell side of the immunological synapse and compete with the costimulatory molecule CD28, thereby reducing the ability of CD28 to accumulate in the synapse. Similar to CD5, CTLA-4 can associate with SHP-1. In addition, it can associate with SHP-2 and PP2A. BTLA has also been reported to associate with SHP-1 and SHP-2 (Watanabe, Gavrieli et al. 2003).

PD-1 appears to have a similar function to CTLA-4 when it comes to preventing the appearance and proliferation of autoreactive T cells. It has been reported that C57Bl/6 mice that are deficient in PD-1 develop glomerulonephritis while similar mice on a BALB/c background develop dilated cardiomyopathy. These diseases are not as severe as those observed in CTLA-4 knockout mice, but nevertheless indicate the importance of this molecule in preventing autoimmune disease. PD-1 plays a role during thymocytes selection, where it may function similarly to CD5 by attenuating signals from the TCR. Thus, the absence of PD-1 may lead to increased negative selection since TCR signaling is stronger (Blank, Brown et al. 2003).

Stains for PD-1 expression revealed that naïve G8 $\gamma\delta$ T cells expressed almost no PD-1 and that activated G8 $\gamma\delta$ T cells expressed detectable levels thereof. In addition, PD-1 expression was found on some $\gamma\delta$ T cells in normal mice and was usually accompanied by a lack of CD8 α expression. Thus, PD-1 may be a suitable marker for the detection of activated $\gamma\delta$ T cells. However, analyses of $\gamma\delta$ T cells that bind T22 tetramers showed that their expression of PD-1 did not differ greatly from that of other $\gamma\delta$ T cells, suggesting that PD-1 expression may not always be an indicator of $\gamma\delta$ T cells that have recognized ligands through their $\gamma\delta$ TCRs (*data not shown*).

Lag-3 (CD223) binds to MHC class II. It has been shown that this molecule can activate dendritic cells and that this molecule may, at the same time, play an inhibitory role in T cell activation. G8 $\gamma\delta$ T cells do not recognize MHC class II through the $\gamma\delta$ TCR. Thus, Lag-3 represents a molecule that is expressed and is not expected to interfere with the recognition of the actual ligand, T10/T22, suggesting that the activation of $\gamma\delta$ T

cells results in the expression of large numbers of inhibitory molecules in the hope that some of these will downregulate their responses. This also suggests that G8 $\gamma\delta$ T cells are desensitized and perhaps broadly tolerized following activation.

Stains for Lag-3 expression revealed that it, like PD-1, is not expressed on naïve G8 $\gamma\delta$ T cells and is readily detectable on them after activation. Thus, Lag-3 may also be a suitable marker for the detection of activated $\gamma\delta$ T cells. Interestingly, PD-1 appears to stain more $\gamma\delta$ T cells in conventional mice than Lag-3. In addition, PD-1 and Lag-3 do not stain activated G8 $\gamma\delta$ T cells on a narrow diagonal, suggesting that their levels may be independently regulated.

Somewhat in contrast to the expression of different inhibitory receptors, $\gamma\delta$ T cell activation leads to the expression of CD160 (BY55), which binds MHC class I and MHC class I-like molecules. This molecule functions as an activating NK receptor (Barakonyi, Rabot et al. 2004) and is also found on activated cytotoxic T cells and all intraepithelial lymphocytes (Agrawal, Marquet et al. 1999). However, it does not signal on its own since it is attached to the surface of cells via a GPI anchor. It has been postulated that this molecule may be important in the generation of memory cells so that these cells continue to receive an activating signal from their environment even though their peptide/MHC ligands may no longer be present and their CD28 levels are reduced.

γδ T cell Activation Reduces the Levels of CD1d Transcripts

CD1d molecules are involved in the presentation of lipid antigens to T cells and are very important in the activation of NK T cells. Transcripts for CD1d1 and CD1d2 and transcripts for Prosaposin, which is involved in the loading and editing of lipids in CD1, were decreased following activation (*Table 3.13*). This suggests that activated $\gamma\delta$ T cells are less likely to activate NK T cells. However, reduced surface levels of CD1d were not observed on G8 $\gamma\delta$ T cells 24 hours after activation, suggesting that the effects of reduced levels of CD1d transcripts are not immediately observable due to existing CD1d or are counterbalanced by increased translation and/or increased total RNA levels.

γδ T cell Activation Leads to Changes in Metabolism-Associated Transcripts

Activation resulted in the upregulation of transcripts for Hexokinase 2 and Serine racemase (*Table 3.14*). The rest of the enzymes involved in glycolysis also tended to show increases following activation, but not as extreme. In addition, some of these enzymes may also be upregulated as a result of long-term culture.

Hexokinase 2 is responsible for the first committed step in the catabolism of glucose, which is present at a concentration of 2 grams per liter in RPMI 1640. This leads to the formation of glucose-6-phosphate at a cost of 1 ATP molecule. Unlike liver and muscle cells, lymphocytes are not known for having vast glycogen stores and there are only so many nucleotides that can be converted into triphosphates. Thus, transcript levels for this enzyme should be relatively low in resting cells and, at least at the 12 hour timepoint, were not upregulated solely in response to the presence of glucose in the media.

Serine racemase is normally seen as an enzyme that interconverts L-serine and Dserine. L-serine is an amino acid that is found in proteins. D-serine functions as a neurotransmitter by binding to the glycine site of N-methyl D-aspartate (NMDA) types of glutamate receptors (reviewed in (Schell 2004)). It is interesting that $\gamma\delta$ T cell activation results in the upregulation of an enzyme that is capable of forming a neurotransmitter because this may allow the nervous system to detect the presence of an immune response. This enzyme has also recently been found to efficiently catalyze the elimination of serine to pyruvate (De Miranda, Panizzutti et al. 2002; Strisovsky, Jiraskova et al. 2003). Glycolysis also leads to the formation of pyruvate so the expression of this enzyme may have to do with the utilization of the 30 mg/l L-serine in the media in order to generate additional pyruvate.

Additional activation-induced changes were also observed in enzymes that are responsible for the synthesis of nucleotides. *De novo* nucleotide synthesis relies heavily on the folate cycle and an inhibitor thereof, Methotrexate, is used clinically to interfere with this process in order to prevent the DNA replication that must occur for proper cell division. Folate cannot be synthesized by mammalian cells and some of the transporters for folate, Rfc-1 and Folr4, are expressed following activation. The expression of receptors for folate has been observed in rapidly dividing cells during development

(Maddox, Manlapat et al. 2003). Serine and glycine allow for the initial conversion of tetrahydrofolate (THF) to N^5 , N^{10} -methylene-THF. While the transcripts for the enzymes required for this step were not detected by microarray, this may have been due to issues with the detection of the transcripts. However, the enzymes that are capable of converting N^5 , N^{10} -methylene-THF into N^5 , N^{10} -methenyl-THF and then into N^{10} -formyl-THF, the NAD+ and NADP+ dependent methylene-THF dehydrogenases, were upregulated. In addition, transcripts for the enzyme Phosphoribosylglycinamide formyltransferase that converts N^{10} -formyl-THF back into THF were upregulated 12 hours after activation.

Many of the final enzymes required for the *de novo* synthesis and salvage of nucleotides were also upregulated following activation. These included CTP synthase, Adenylosuccinate lyase, Adenylosuccinate synthase, GMP synthase, IMP dehydrogenase 2, Dihydroorotate dehydrogenase, Uridine/Cytidine kinase, Adenylate kinase 2, and Thymidylate synthase. Given that activation leads to enhanced levels of RNA synthesis, DNA replication, and cell division, it makes sense that the expression of enzymes required for nucleotide synthesis and salvage need to be increased.

Activation Leads to the Activation of B Cells

During the activation of $\gamma\delta$ T cells, it was observed that the $\gamma\delta$ T cells were not the only cells that became CD69⁺. A further analysis showed that a large percentage of B cells also became CD69⁺, albeit at expression levels that were about 10-fold lower than those observed on $\gamma\delta$ T cells.

It has been reported that the binding of MHC class II on immature dendritic cells by Lag-3 can induce the maturation of these cells (Andreae, Buisson et al. 2003; Buisson and Triebel 2003). In addition, it has recently been observed by members of Mark M. Davis' lab that T cell activation induces a brief calcium flux in B cells that serve as antigen presenting cells. Perhaps, the ligation of T10/T22 on B cells by G8 $\gamma\delta$ T cells was directly inducing the expression of CD69 on both cells. Thus, experiments were designed to determine the source of CD69-expression by B cells and are discussed in Chapter 4.

Conclusions

Unlike the activation of G8 $\gamma\delta$ IELs that was studied in Chapter 2, the activation of splenic G8 $\gamma\delta$ T cells led to large changes in the transcripts they expressed. Among those changes, it appears that activated $\gamma\delta$ T cells express genes associated with effector functions, such as Granzyme B and IFN γ , but also express genes that have been shown to diminish TCR signaling, such as BTLA, CD5, CD6, CTLA-4, Lag-3, and PD-1. Thus, activated $\gamma\delta$ T cells may attain effector functions but may also shut down at the same time. It will be important to see if G8 $\gamma\delta$ T cells can be activated in a way that does not result in their expression of inhibitory molecules. In addition, it will be important to determine whether the responses of *in vivo*-activated G8 $\gamma\delta$ T cells differ from what has been observed *in vitro*.

Figure Legends

Figure 3.1: T10/T22 expression is strain dependent, inducible, and higher on B cells in the blood than in the spleen

(A) Splenocytes were isolated from BALB/c (blue), B10.BR (red), and C57Bl/6 mice (black) and stained using a biotin-conjugated anti-T10/T22 antibody (hamster; clone 7H9) and FITC- and PE-conjugated antibodies to identify NK cells (anti-CD49b; rat IgM; clone DX5), $\gamma\delta$ T cells (anti-TCR δ ; hamster; clone GL3), granulocytes (anti-Ly6G/Ly6C; rat IgG2b; clone RB6-8C5), $\alpha\beta$ T cells (anti-TCR β ; hamster; clone H57-597), CD19⁺ B220⁺ and B220^{low} B cells (anti-CD19; rat IgG2a; clone 6D5) (anti-B220; rat IgG2a; clone RA3-6B2), CD11c⁺Mac-1⁺ dendritic cells, and CD11c^{neg}Mac-1⁺ monocytes/macrophages (anti-CD11c; hamster; clone HL3) (anti-Mac-1; rat IgG2b; clone M1/70.15). Macrophages/monocytes were further subdivided into granular (thin line) and non-granular (thick line) cells based on their side scatter profile. 7H9 was detected using allophycocyanin-conjugated streptavidin. Prior to the addition of any labeled antibodies, cells were blocked using 50 µl/well of 10 µg/ml of anti-CD16/CD32 in FACS wash (PBS with 5 mM EDTA, 0.1% sodium azide, and 5% FCS) for 20 minutes and then by adding 50 µl/well of 10 µg/ml anti-CD16/CD32, 10% hamster serum, 10% mouse serum, 300 µg/ml mouse IgG, and 300 µg/ml rat IgG in FACS wash for 20 minutes. Cells were then stained by adding 50 μ l/well of labeled antibodies for an additional 30 minutes. (B) Splenocytes from a C57Bl/6 mouse were incubated with a mix of bacteria at 37°C for 2 hours and granulocytes were analyzed for T10/T22 expression. (C) Cells were isolated from the blood and spleen of a C57Bl/6 mouse and CD19⁺ B220⁺ and B220^{low} B cells were analyzed for T10/T22 expression. (D) Splenic $CD19^+ B220^+$ and $B220^{low} B$ cells were further analyzed for CD5 and IgD expression.

Figure 3.2: $\gamma\delta$ T cells and $\alpha\beta$ T cells show a different distribution in the spleen, mesenteric lymph node, and thymus of a G8 BALB/c mouse

The spleen, mesenteric lymph node, and thymus of a G8 BALB/c mouse was frozen and cut into 10 μ m sections. The sections were fixed using acetone and stained with FITC-conjugated anti-TCR β antibodies (green) and PE-conjugated anti-TCR δ

antibodies (red) and nuclei were stained with DAPI (blue). The red, green, and blue channels of the inverted images are shown on the right.

Figure 3.3: Splenic G8 $\gamma\delta$ T cells and $\alpha\beta$ T cells express similar genes

Splenocytes of G8 BALB/c mice were stained with antibodies to the TCR β chain and the TCR δ chain and 2.0x10⁶ $\alpha\beta$ TCR⁺ $\gamma\delta$ TCR⁻ and 1.6x10⁶ $\alpha\beta$ TCR⁻ $\gamma\delta$ TCR⁺ cells were sorted on ice. Their RNA was isolated, amplified using two rounds of *in vitro* transcription, and analyzed using Affymetrix microarrays. Expression levels of transcripts that were not called absent in both samples are shown as plus signs where the *x* and *y* axis values represent their detected levels in $\alpha\beta$ T cells and $\gamma\delta$ T cells, respectively.

Figure 3.4: Lymphoid organs are different in G8 RAG2^{KO} BALB/c mice

(A) The G8 RAG2^{KO} BALB/c has a thymus that is small compared to what would be found in G8 BALB/c and BALB/c mice. (B) The G8 RAG2^{KO} BALB/c mouse has small but detectable mesenteric lymph nodes. Sections from the (C) spleen and (D) small intestine were stained with antibodies to detect dendritic cells (CD11c; green) and $\gamma\delta$ T cells (red) and nuclei were stained with DAPI (blue). The red, green, and blue channels of the inverted images are shown on the right.

Figure 3.5: G8 γδ T cell activation leads to TCR downregulation, the expression of CD69 and CD44, blasting, and cell division

G8 RAG2^{KO} BALB/c splenocytes were cultured (A) alone or cocultured for either (B) 1 day or (C) 2 days in the presence of a five-fold excess of H2^{b/d} BALB/c splenocytes and analyzed for CD69 expression (*x* axis) and $\gamma\delta$ TCR levels (*y* axis). (D) The expression of the activation marker CD44 was assayed on G8 $\gamma\delta$ T cells after 1 day of coculture with BALB/c (gray shaded area) or H2^{b/d} BALB/c cells (black line). G8 $\gamma\delta$ T cells were labeled with CFDASE and cocultured with either BALB/c splenocytes (shaded regions) or H2^{b/d} BALB/c splenocytes (lines) for 14 (black/gray), 45 (blue), or 92 hours (red) and analyzed for (E) cell size based on forward scatter and (F) CFSE levels.

Figure 3.6: B10.BR and H2^{k/d} BALB/c splenocytes do not activate G8 $\gamma\delta$ T cells as well in cocultures as *b* haplotype-expressing splenocytes

G8 RAG2^{KO} BALB/c splenocytes were incubated with a five-fold excess of (A) B10.BR or (B) H2^{k/d} BALB/c splenocytes for 1 day and analyzed for $\gamma\delta$ TCR levels and CD69 expression. H2^{k/d} BALB/c splenocytes were obtained by crossing BALB/c mice with BALB.K mice.

Figure 3.7: G8 γδ T cell activation leads to large changes in gene expression

RNA was isolated from sorted splenic G8 RAG2^{KO} BALB/c $\gamma\delta$ T cells after coculture with a five-fold excess of either BALB/c or H2^{b/d} BALB/c splenocytes and subjected to Affymetrix microarray analysis after PCR-based cDNA amplification. Gene expression levels were then compared between G8 RAG2^{KO} BALB/c $\gamma\delta$ T cells that had been cultured for 12 hours and those that had been cocultured for 4 days in the presence of a five-fold excess of either (A) BALB/c or (B) H2^{b/d} BALB/c splenocytes. Gene expression levels were also compared after (C) 4 days or (D and E) 12 hours of coculture with BALB/c and H2^{b/d} BALB/c stimulator cells. (A – D) Affymetrix U74 'A' arrays were analyzed for one experiment and (E) U74v2 'A,' 'B' and 'C' arrays were analyzed for another.

Table Legends

Tables 3.1 – 3.14: Microarray analysis of G8 γδ T cell activation

The first eight columns show the gene expression levels for genes in G8 $\gamma\delta$ T cells after the indicated culture conditions. Numbers in gray indicate that the expression of a gene was called "absent" in that sample based on the probe set used for its detection. Some genes were detected by more than one probe set with differing efficiencies. "---" indicates that no value was available for a particular probe set (e.g., when the probe set was on a 'B' array and only an 'A' array was run).

The first four columns are for 12 hour and 4 day cocultures with BALB/c (+H2^{d/d}) and H2^{b/d} BALB/c (+H2^{b/d}) splenocytes where PCR-based cDNA amplification was used prior to probe synthesis. Only the 'A' array of the U74 array set was used. The next three columns are for 12 hour cocultures with either BALB/c (+H2^{d/d}), H2^{b/d} BALB/c, or a 50%/50% mix of the two (+Mix) where PCR-based cDNA amplification was also used prior to probe synthesis. All three arrays of the U74v2 array set were used. The next two columns are for sorted freshly-isolated $\gamma\delta$ T cells and $\alpha\beta$ T cells from a G8 BALB/c mouse where two rounds of *in vitro* transcription were used for probe synthesis. All three arrays of the U74v2 array sets differ in that a large number of probe sets were erroneous in the U74 set. These erroneous probe sets are known and were omitted from the analysis.

The next two columns indicate the fold difference in expression between the genes in 12 hour samples that were incubated with either H2^{b/d} BALB/c or BALB/c splenocytes. The first column is a comparison of columns 1 and 3. The second column is a comparison of columns 5 and 7. A positive number indicates that the expression of a gene was increased during G8 $\gamma\delta$ T cell activation while a negative number indicates that the gene's expression did not change. A '1' or '-1' fold change indicates that the gene's expression did not change. A 2-fold change is indicative of a doubling in a gene's expression. The following Microsoft Excel formula was used for the fold change calculation, where *val_1* and *val_2* were the two expression values that were being compared:

=IF(ISNUMBER(val_1),EXP(ABS(LN(val_2/val_1)))*LN(val_2/val_1)/ABS(L N(val_2/val_1)),"---")

The next columns indicate the current gene's symbol in Entrez followed by the gene's name and probe set used for its detection in that row.

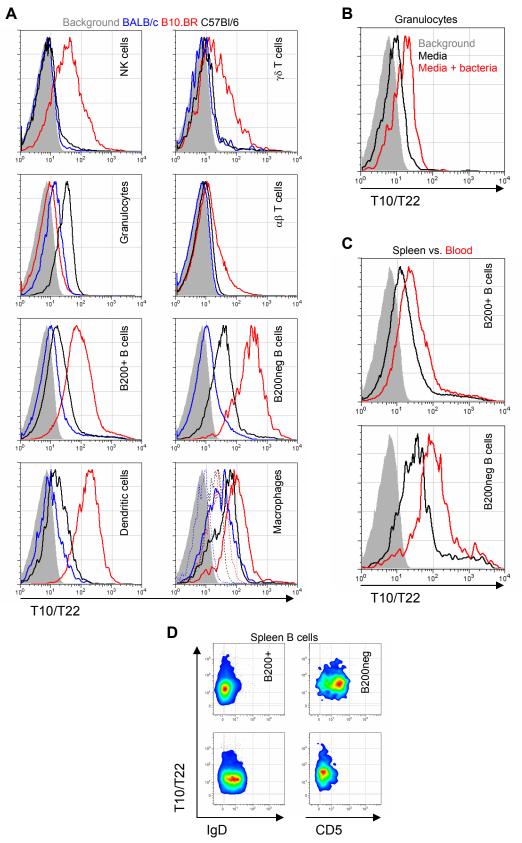
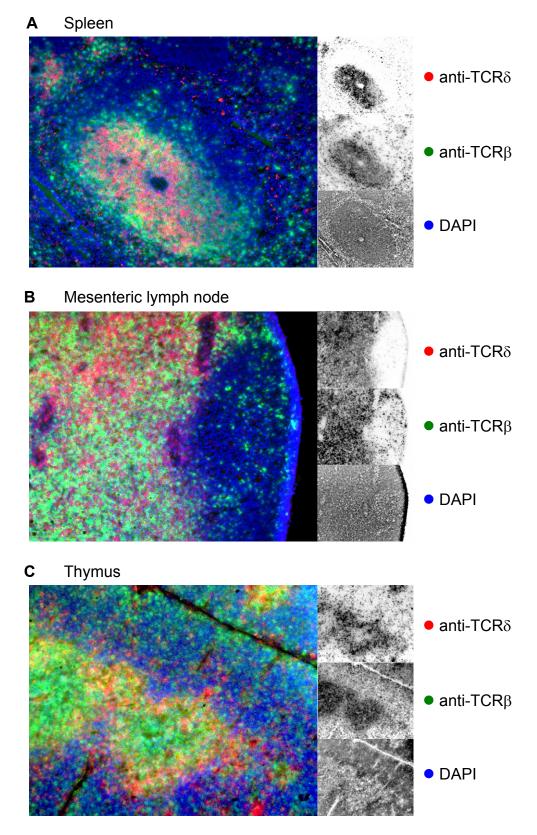



Figure 3.1: T10/T22 expression is strain dependent, inducible, and higher on B cells in the blood than in the spleen

Figure 3.2: $\gamma\delta$ T cells and $\alpha\beta$ T cells show a different distribution in the spleen, mesenteric lymph node, and thymus of a G8 BALB/c mouse

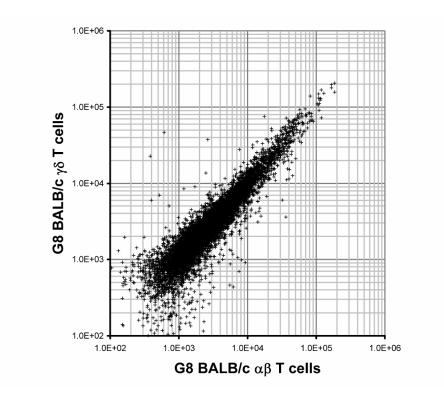


Figure 3.3: Splenic G8 $\gamma\delta$ T cells and $\alpha\beta$ T cells express similar genes

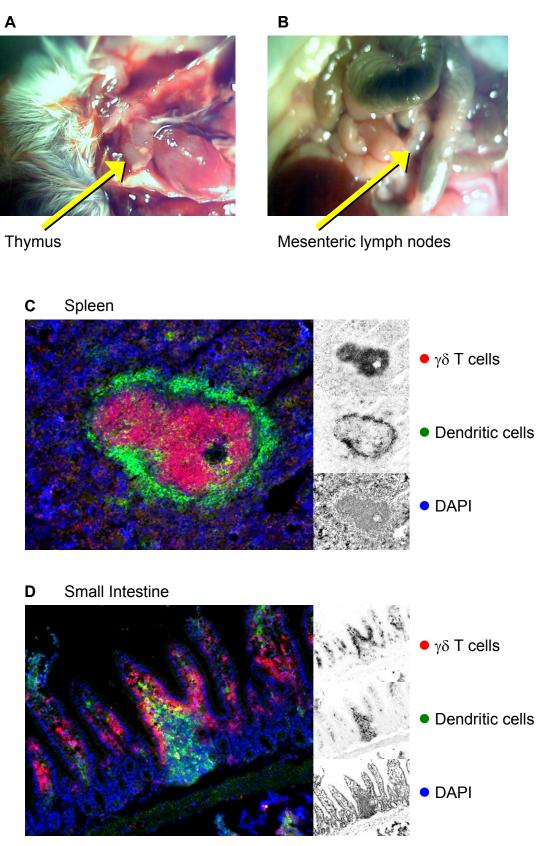
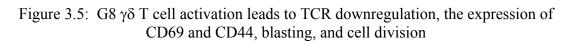



Figure 3.4: Lymphoid organs are different in G8 RAG2^{KO} BALB/c mice

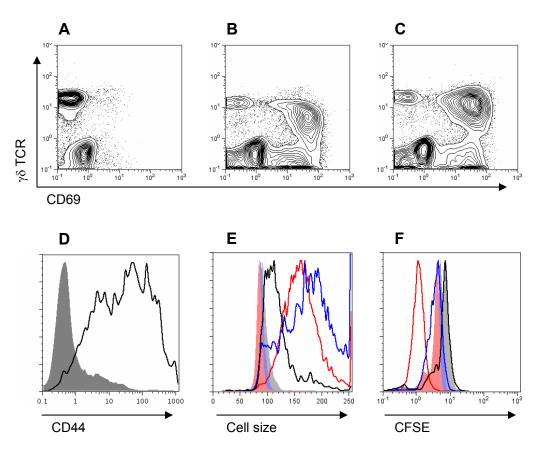
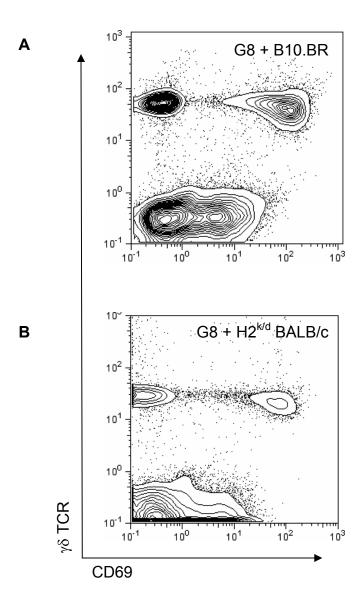



Figure 3.6: B10.BR and H2^{k/d} BALB/c splenocytes do not activate G8 $\gamma\delta$ T cells as well in cocultures as *b* haplotype-expressing splenocytes

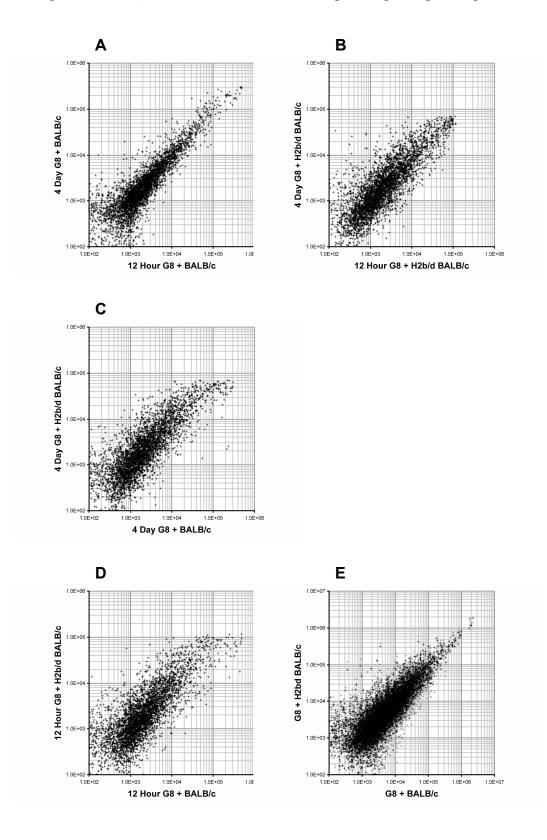


Figure 3.7: G8 $\gamma\delta$ T cell activation leads to large changes in gene expression

changes
d.
vation-induce
ati
Activa
••
Ö,
Tabl

											,	
Ŧ	12 ^{d/d}	±H1	bid	+H2 ^{b/d}	+Mix	+H2 ^{did}						
12 hr	4 day	12 hr	4 day	12 hr	12 hr	12 hr	yôT d	¢BT d	change	Gene	Prol	robe set
1	I	!	i	132896	127662		!	I	i	47 Cd69	CD69 antigen 164220	164220 at
1910			6410	7035	3853	1374	10443	14006	7	5 Itgav		4386 f at
29211	36898	6962	52479	48807	118691		21233	19656	4-	-7 Itgb7		0906 at
1	i	!	i	1166	1591		1	i	i	-4 Itgb7		2193 f at
3840	1734	1179	1607		2597		5155	4979	ų	-3 Sell		2838_at

Table 3.2: TCR-associated transcripts

	Probe set	92683 at	115906_at	102287_at	103539_at	103462_at	103596_at	165071 r at	103596_at	165071_r_at	160667_at	161808_f_at	105541_at	110736 at	110738_at	166264_at	100133_at	169541 <u>i</u> at	103028_at	101441 i at	101442 f at	113336_at	102228 at	102957_at	102809 s_at	161265 t at	105610_at	102322 at	10/400_dt	107396 at	166860 at	103366 at	116815_at	100292 <u>at</u>	134041_at	97944_f_at	93105 <u>s</u> at	92328_at	102744_at	102745_at	102695 at	104679_at	162137_f_at	101982_at	96511 <u>s_</u> at	99799_at	93661_at 93667_c_at
4	Name	CD3 antiden, delta polypeptide	CD3 antigen, epsilon polypeptide	CD3 antigen, zeta polypeptide	cytoplasmic tyrosine kinase, Dscr28C related (Drosophila)	dedicator of cyto-kinesis 2	diacylglycerol kinase, alpha	diacytigtycerol kinase, alpha	diacytolycerol kinase, alpha	diacylglycerol kinase, alpha	Ena-vasodilator stimulated phosphoprotein	Ena-vasodilator stimulated phosphoprotein	FYN binding protein	FYN binding protein	FYN binding protein	FYN binding protein	Fyn proto-oncogene	Fyn proto-oncogene	IL2-inducible T-cell kinase	inositol 1,4,5-triphosphate receptor 5	inositol 1,4,5-triphosphate receptor 5	inositol 1,4,5-triphosphate receptor 5	linker for activation of T cells	lymphocyte cytosolic protein 2	lymphocyte protein tyrosine kinase	lymphocyte protein tyrosine kinase	phosphatidy inocitol transfer protein, cytoplasmic 1	prospriatuyinositot transfer protein, cytoptastilic t	prospriatuyiinositot tarister proterin, cytopasitito i nhoshhatidvlinositot transfer moterin, cvfondasmic (phospholipase C. gamma 1	Rho GT Pase activating protein 15	Rho GTPase activating protein 9	rho/rac guanine nucleotide exchange factor (GEF) 18	SH2 domain protein 2A	syntaxin 11	T-cell receptor alpha, constant	T-cell receptor beta, constant	T-cell receptor delta, constant	T-cell receptor gamma, constant	T-cell receptor gamma, constant	T-cell receptor gamma, constant	T XK tyrosine kinase	TXK tyrosine kinase	vasodilator-stimulated phosphoprotein	vav 1 oncogene	vav 1 oncogene	zeta-chain (TCR) associated protein kinase zeta-chain (TCR) associated protein kinase
	Gene	Cd3d	CdBe	CdBZ	Tec	Dock2	Dgka	Dgka	Dgka	Dgka	E	Ē	Fyb	Fyb	Fyb	Fyb	Fyn	Fyn	Ę	ltpr5	Itpr5	ltpr5	Lat	Lcp2	ĽĞ	ž	Pitpinc1	Pilpiloi	Pitone1		Arhoap15	Arhgap9	Arhgef18	Sh2d2a	Stx11	Tcra	Tarb	A630038E17Rik	Tcrg	Tcrg	Targ	Txk	Txk	Vasp	Vav1	Vav1	Zap70 Zap70
	ge	4	4	-2	-	-7	φ.	ς.	Ŷ	ę	-7	ዋ	- 2	-	Ŷ	5	2	7	-	4-	-2	۲.	-	ς, υ	-	Ч с	γr	? `	4 M		<u>-</u> -	9- 9-	-25	2	4	-	-2	-	ዋ	φ	ę.		Ŷ	1	-	-	40
	change	-3	i	ς.	e.	Ĩ		Ĩ	9-	i	i	i	i	i	i	•	2	•	1	Ϋ́,	9- 9	i	-	-	-	I	i °	P	ii	i	1	-4	i	2	i	-	-2	-2 -	-7	-4	-2		i	2	-	1	2
	αβ Τ	598	16928	5124	2801	2560	12825	i	12825	i	i	1	3126	580	41791	i	10411	i	12935	54704	12194	2043	1945	4453	13087	i	8/160	42/0	3300 15877	2173	i	5890	15753	3887	3060	39102	19747	16472	612	383	721	5530	i	2604	1386	756	1664
	γδ T o	682	22050	2724	6456	2569	9068	1	9068	ł	!	ļ	1849	1218	49430	1	5172	ļ	13327	60680	17622	1893	2418	4852	10277	1	18959	1400	21383	1552	!	7450	14421	2388	655	20175	28045	33265	46797	22766	5004	7693	ļ	2890	2336	551	1176 16530
+H2 ^{did}	12 hr 🛛	1506	10215	15263	12954	11520	93774	5604	93774	5604	16598	52295	2967	4814	43509	149	2121	439	15963	35183	12455	1340	5630	4593	72286	16312	1466/		18895	2576	15501	20462	15090	5031	1444	12280	32630	37448	59967	116771	7048	32205	2466	8190	15259	10768	20084
			7181						36725		7730	-	1468		412	242	283							10812		109/3			0455 10358			8261						220344 33		÷.		5539		9982	1689		47937
i +Mix	- 12 hr											Ĩ																																	-	•	
+H2 ^{bid}	12 hr																																					Č.									70374
þý	4 day	361	i	6176	846	2019	31136	i	31136	i	i	i	i	i	i	i	1375	i	9386	32394	13474	i	2441	2632	15997	i	1 0011	1120		i	i	5243	i	5505	i	4347	8338 9338	44319	28281	39141	696	1972	i	4742	3204	3233	3879 22767
+H2 ¹		181	!	4801	831	682	4156	!	4156	ł	!	!	!	ł	!	!	5551	ļ	13060	14004	3485	!	2063	5519	10418	!		0/4	! !	!	1	1913	ł	5740	ļ	12162	4682	55665	6512	6408	1335	2689	ļ	2075	1612	2663	7364
	day 1	167	i	8547	3519	2122	16952	i	16952	i	i	i	i	i	i	i	1242	i	12225	74597	32945	i	2286	3075	11818	i	1 2000	80	1 1	i	i	5005	i	619	i	9268	6285	136513	46030	30104	2926	12832	i	1403	1973	2161	1766
+H2 ^{d/d}	12 hr 4 day 12 hr																																														1058 20521

ipts
nscr
tra
ted
issociated
asso
ų
IF-k
Z
3.3
ble
Ta

	Probe set	111316_at	93706 at	111615_at	162716_at	92301_at	103216_f_at	94196 at	106513_at	114642_at	133562_at	98427_s_at	101554_at	104149_at	167965 f at	95715_at	99982_at	103614_at	101727_at	107985_at	112472_at
1			nhibitor of kappa B kinase beta	nhbitor of kappaB kinase beta	nhibitor of kappa B kinase beta	nhbitor of kappaB kinase epsilon	nhbitor of kappaB kinase gamma	nhbitor of kappaB kinase gamma	nhbitor of kappaB kinase gamma	nhibitor of kappaB kinase gamma	mucosa associated lymphoid tissue lymphoma translocation gene 1	ructear factor of kappa light chain gene enhancer in B-cells 1, p105	nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha	uctear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha	uchear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha	huctear factor of kappa light chain gene enhancer in B-cells inhibitor, beta	huolear factor of keppa light chain gene enhamer in B-cells inhibitor, beta	uchear factor of kappa light polypeptide gene enhancer in B-cells 2, p49/p100	ucciear factor of leappa light polypeptide gene enhancer in B-cells inhibitor, epsilor	huo lear factor of kappa light polypeptide gene enhancer in B-cells inhbitor, epsilor	rNFAIP3 interacting protein 2
	Gene Name	AY078069 kappa BNS	-		Ikbkb inhbitor of k	Ikbke inhbitor of k	Ikbkg inhbitor of k	kbkg inhbitor of k	kbkg inhibitor of k			-	Nfkbia nuclear facto	-	-	Nfkbib nuclear facto		-	Nfkbie nuclear facto	Nfkbie nuclear facto	Thip2 The TNFAIP3 inte
	change	- 20	-1		ק ו	م ا	-2		1	1	9 0	9	1	1	- ო i	1	с С	5	1	-	
	αβΤc	2031	508	4878	i	3016	1318	1157	1250	777	10189	18250	3595	5138	i	2069	267	244	427	1524	3674
	γδ T	8 2230	6 440	2 4833		3 3138	8 904	-			5724	-	8 4924	1 4466	2	9 1632	396	211	310	6 1989	0 2161
+H2 ^{d/d}	12 hr yð T	21 708		52 28072			20 628		27 1095			56 23595			56 181027	36 6189		79 4320	56 112	54 2816	36 10740
t +Mix	· 12 hr	27 12221		38 29152				3453			36 10363						51 31501			3154	
+H2 ^{b/4}	r 12 hr	1412		265	6658				182	122					~						4086
+H2 ^{bid}	4 day	•	885 1648	:			47 848	223 128	• •	1			58 3785								-
	12 hr	•		1		<i>t</i>		-		1									07 442	•	
H2 ^{d/d}	2 hr 4 day 12 hr 4 day		30 1771					32 1076				.,	31 8250							!	-
+	12 hr		1130	•		192	201	1032	1		1	1111	563	226	1	228	178	73	æ	•	

Table 3.4: Effector function transcripts

+H2	b/d	+ H2 ^{b/d}	D/C	+H2 ^{b/d}	+Mix	+H2 ^{d/d}							
2 hr 4	4 day	hr 4 day 12 hr 4 day	day	12 hr	12 hr	12 hr	yô T 👌	xβ T	change	6	ene	Name	Probe set
1	1	1	I	29227	21753	7424	1	1	I	4 Eç	gf1	endothelial cell growth factor 1 (platelet-derived)	160292 at
2011	2634	3160	3880	3627	3010	3237	2479	3325	2	1 Ece1	e1	endothelin converting enzyme 1	103456 at
!			i	11145	8684	2733	378	445	i	4 Ece1	e1	endothelin converting enzyme 1	116065_at
2495	4572	29595	19534	197893	182734	45921	858	1512	12	4 Ep	Ephb4	Eph receptor B4	98446 s at
206			1841	513	170	371	281	180	-	1 Gzma	ma	granzyme A	102995 s at
808			19122	143955	94952	871	135	1487	71	165 GZ	dm	granzyme B	102877_at
62			1127	2344	1622	94	336	165	20	25 Pla	25 Pla2g12a	phospholipase A2, group XIIA	104342 i at
47043		-	60714	149593	122185	29620	29244	22941	0	5 Pla	Pla2g12a	phospholipase A2, group XIIA	104343 f at
ļ			i	20262	16801	1334	26799	27296	i	15 Pd	Pdod11	programmed cell death protein 11	112847 at
!	i	!	I	2373	1967	208	!	i	ļ	11 Pot	Pdcd11	programmed cell death protein 11	167856 s_at
608		18120	12805	28132	21221	641	241	674	30	44 Se	14 Semint9	serine (or cysteine) proteinase inhibitor, clade B. member 9	98405 at

transcripts
okine-associated
Ĕ
\sim
\circ
3.5:
(1)
le
<u>p</u>
Ta

		Probe set	103199 at	102424_at	94146_at	100022_at	98579_at	102661_at	132735 at	96553_at	102779_at	161666_f_at	103259_at	98002_at	99334_at	92737_at	103432_at	99491_at	102029_at	99991_at	99992_at	114552_at	101144 at	112262_at	104268_at	99030_at	98911_at	102630 <u>s</u> at	102711_at	94378_at	161609_at	92232_at	162206 <u>f</u> at	102629_at
		Name	chemokine (C motif) ligand 1	chemokine (C-C motif) ligand 3	chemokine (C-C motif) ligand 4	cytokine inducible SH2-containing protein	early growth response 1	early growth response 2	early growth response 3	G-protein coupled receptor 65	growth arrest and DNA-damage-inducible 45 beta	growth arrest and DNA-damage-inducible 45 beta	growth factor independent 1	interferon consensus sequence binding protein 1	interferon gamma	interferon regulatory factor 4	interferon-stimulated protein	interleukin 10 receptor, beta	interleukin 16	interleukin 17 receptor	interleukin 17 receptor	interleukin 17 receptor	interleukin 18 receptor 1	interleukin 2 receptor, beta chain	interleukin 6 receptor, alpha	interleukin 7 receptor	Janus kinase 1	lymphotoxin A	regulator of G-protein signaling 14	regulator of G-protein signaling 16	regulator of G-protein signaling 16	suppressor of cytokine signaling 3	suppressor of cytokine signaling 3	tumor necrosis factor
		Gene	2 XcI1	3 Ccl3	3 Ccl4	8 Cish	3 Egr1	9 Egi'2	6 Egr3	5 Gpr65	3 Gadd45b	10 Gadd45b	6 Gfi1	19 Icsbp1	8 Ifng	78 Irf4	4 Isg20	-4 II10rb	-9 II16	4 II17r	-3 II17r	8 II17r	8 11811	3 II2rb	-7 16ra	7 II7r	-3 Jak1	8 Lta	-6 Rgs 14	110 Rgs16	11 Rgs 16	-5 Socs3	-3 Socs3	7 Tnf
		nge	2	2	_	9		4		2			2		119 46		ო					1		1			-		e e	1	1	ņ	- -	2
)		change	with	10	-										·					•										-				with
		αβ Τ	312	835	1000	2320	2831	2619	64	3913	969	i	1239	242	420	784	2316	17957	16020	517	16758	1094	3540	12180	6197	25871	12621	930	22548	3491	I	4704	I	247
			646	1090	1388	1166	499	1246	126	6790	441	1	3398	3042	72	163	2635	15024	17181	837	19312	1509	3234	7046	3576	20768	13116	424	17922	1895	1	11634	1	486
	+H2 ^{d/d}	12 hr 🕺 T	937	1483	751	1381	1910	667	8	15502	1092	2441	2742	617	27	314	1445	4295	14662	7584	29528	3245	2311	5040	7410	16045	45726	321	123370	3535	958	17525	6349	236
	+Mix +	2 hr 1	1871	3132	1303	9580	6204	11300	1660	61252	4058	28216	14384	13136	6887	20280	5505	2482	4744	4349	16140	1202	1043	10675	2899	3620	20785	4609	31809	317515	49562	12892	4798	7290
	H2 ^{b/d}		1883	5188	1985	10430	5799	12981	2894	69783	3161	25552	15118	12032	13503	24477	5333	1099	1723	1867	11672	420	264	14461	1126	026	13590	5806	19952	387487	58356	3581	1907	6491
	+	t day 1	297	89	134	1868	1754	1646	i	1272	706	i	4312	0323	28	1696	905	3478	1719	565	5766	i	386	i	115	2269	9381	650	5774	2324	i	594	i	83
	H2 ^{b/d}	4 o								Ì			·	Ì															·	1				
		12 hr				3638																												
	_	4 day	117	579	208	1833	2583	582	i	17541	1154	I	2576	2010	835	135	3580	3161	2035	906	17971	i	3675	I	2010	3743	6870	460	20434	4849	i	4517	i	200
	+H2 ^{d/d}																																	

transcripts

associated
nesis-
synth
otein
\mathbf{Pr}
<u>;</u>
\mathfrak{c}
Table

-	Probe set	94918_at	94361_at	106640 at	10001 F	111907 at	165199 f at	168528 f at	94253_at	115482 at	97205_at	938/3_al	103920_at	32010_1_dt 137241 f at	160451 at	98608_at	160503_at	95/56_at	168366 at	93727_at	108476_at	98515_at	105/02_dl 108354_at	103853 at	171003 r at	96628_at	99180_at 97580_at	93342 at	108958_at	116139_at 162281_at		92569_f_at	95109_at	104/66_at q7824_at	100144 at	101634 at	103393 at	92//5_at	129169 at	97254 at	98923_at	97838 at	96//8_at	95049 at	100101 at	101506_at	111352_at	101004 f at	110578 at	95054_at	98605 at
	Name	alanyHtRNA synthetase	DEAD (Asp-Glu-Ala-Asp) box polypeptide 21	DEAD (Asp-Glu-Ala-Asp) box polypeptide 21	DNA segment, Chr.1, wayne State University 4u, explessed	DIVA sognenic, On 1, wayne orace onweisity to, expressed enkarvotic translation elongation factor 1 ensilon 1	eukaryotic translation initiation factor 1A, Y-linked	eukaryotic translation initiation factor 1A, Y-linked	eukaryotic translation initiation factor 2, subunit 1 alpha	eukaryotic translation initiation factor 2B, subunit 3	eukaryotic translation initiation factor 3, subunit 1 alpha	eukaryono nanskatoon innation racior 3, subunin 9 (eta) outoo otio tiministion initiotion footor 4ommo 4	eukaryotto translation Initiation factor 4, gamma 1	eukaryotic translation initiation factor 4F	eukaryotic translation termination factor 1	eukaryotic translation termination factor 1	tionilarin Fistikaansis olin saas	FtSJ nomolog 3 (E. coli)	Gebnation factor	G1 to phase transition 1	gem (nuclear organelle) associated protein 6	general transcription factor II E, polypeptide 2 (beta subunit)	gerrerar uarisoription racioning, putypeptuen deneral transcrietion factor IIE - volveestide 1	glutamate-rich WD repeat containing 1	glutamate-rich WD repeat containing 1	glutamy-proty-tRNA synthetase	G I P DINGING protein 4 histich/HPNA svorthetase	Mki67 (FHA domain) interacting nucleolar phosphoprotein	Mki67 (FHA domain) interacting nucleolar phosphoprotein	nucleolar and collect-body phosphoprotein 1 nucleolar and collectionshowship in 1	nuceoral and concerning prosproprocini i nucleotar emistra 1	nucleolar protein 5	nucleolar protein 5A	nucleolar protein tamity A, member 1 (H/ACA small nucleolar RNPs) nucleolar protein family A member 2		nucleophosmin 1	paraspeckle protein 1	poly A binding protein, cytoplasmic 4 DDP2 zm mDNA zazasting findur 3 homelia (zm.d)	PRP4 pre-miny processing lactor 4 homolog (yeast)	RNA binding motific protein 8	RNA terminal phosphate cyclase like 1	RNA, U22 small nucleolar	RRS1 ribosome blogenesis regulator homolog (S. cerevisiae)	small nucken nomuceoprotein D1 small nucken ribonucleoprotein D2	ypeptide	small nuclear nbonucleoprotein polypeptide A	small nuclear ribonucleoprotein polypeptide F	spirang tactor, arginine/serine-rich 3 (SRo20) solicino factor: arcinine/serine-rich 3 (SRo20)	TAF3 RNA polymerase II, TATA box binding protein (TBP-associated factor	threony-tRNA synthetase	trootoohanvi-tRNA svnthetase
	Gene	Aars	Ddx21	Ddx21	D11WSU406	Eefle1	Eirlay	Eiflay	Eit2s1	Eir2b3	Eir3s1	EII389 Eif4e4	Elf4g1 Elf4o4	Elf4e	Eff	Ett1	Fbl	FtSj3 Cfm	Gfm	Gspt1	Gemin6	Gtf2e2	GIIZI	Grwd1	Gwd1	Eprs	Gtp0p4 Hars	Mki67ip	Mki67ip	Nolc1	Not	NoI5	Nol5a	Nola1 Nola2	Ncl	Npm1	Pspc1	Professor	Prof4	Rbm8	Rcl1	Rnu22	Ris1	Shind2	Snrpa	Snrpa1	Snipt	Sliss	Taß	Tars	Wars
		ĉ					2 2	5	4	4	50	n ∡	4 C	4 63	2	0		ຄຸ		10	4		4 4			4 0	9 4			11		8	9	ъ ч	9	e	4	م 1	± 00	0	5	00	9	5 0	ŝ	en l	£ 20 ₹	4 40		თ	Ę
	change	2	7	i	4	i	!	I	0	i	41	0 0	οc	v i	I	2	i	a	i !	e	i	ς, μ	4	10	1	<u>۲</u>	4 ୯	0	i	1	С	1 10	2	4 4	t Q	ŝ	Ω.	D	ii	e	5	en 1	ю •	1 0	Ω.	ო	۰ ا	იო	' i	4	e.
ŀ	αβI	427	2925	1854	8007	12978	1	i	1534	1026	4674	1460	2011	4406	I	3356	1	5231		1765	7910	1420	3000	116	i	3586	9092 6166	1832	40	504	2288	2412	17795	22334	8874	14851	4747	932/	9505	5629	5027	4365	6160	18084	1380	1213	6/45	7336	825	1122	1110
		1169	2145	1863	SZCI.	9581	5 !	1	1524	120	2574	7000	3604	5234	1	2351	1 0000	2/28		1248	8066	1192	700	28	1	2225	5/51 5128	1766	41	238		666	13891	29/95	4992	6444	2537	3/24	10518	3571	3953	3825	48/5	22695	1308	1169	/821 4626	8643	967	1011	4044
	ir γŏ I	1811	458	1169	434	1323	885	742	6447	626	2208	00/ 722	<233 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	958	335	351	192	5//	4547	897	984	828		195	17806	793	2/33	178	610	3196 4303	2037	334	690	25362	606	585	442	151	23986	130	351	781	17/05	630	0/2	2141	469	00/ 665	330	704	100
	12 hr																						Ì				ĺ																								
	12 hr			114864					"			· ·				3666			7120						37742		1321		1299	0.81	192	319	14828	245468	4692	6598	g	191/1		1.7			105430			5375					
	2 hr	6094	22227	200165	000700	166189	8724	3891	27051	11593	10928	97476	9004	5005 6456	6072	3567	40218	/6/30	21039 6816	18710	145986	12520	72205	34158	39308	6903	752805 50828	7551	27194	35087	14042	6798	159667	381557	94402	86076	6370	21962	83101	83985	31140	5933	103903	229615	89530	6036	35548	39088	7973	6490	
		3536	3378	1 0101	4242		i	i	4745	i	2942	4309 20ED	2009	1212	i	1229	i	4968	1	2777	i	7758	142.20	640	i	5500	1835 27770	1360	i	11	80.2	1344	39772	4655 52351	22678	25124	1541	21193	i i	15479	3779	1460	11831	39667	11717	1004	i a	5703	3 i	1039	
	12 hr 4 day	1716	14309		12331		ł	ļ	8966	1	11148	10400	183/1	<u>8</u>	!	2794	15000	/\$997/	!	2784	ļ	8770	1947	3114	1	8288	11123 58275	6197	Ţ	! !	2422	10079	88043	55/4/ 64865	30674	39396	6430	39129	! !	44810	27229	3937	58452	81951	11019	3537		26862		1885	
		550	2680	12	ICR		i	i	1147	i	681	011 012	51.0	3	i	460	1 2	9210	11	169	i	681 640	ੂ Ω	611	1	514	5354 5576	2461	i	1	345	272	3665	5074 32505	1599	9472	110	1290	1 1	7842	5791	546	2452	5143	8690	586	1 00	932 7135	3 1	494	
	2 hr 4 day																																	13835 13835 5												1152 1					
	2 5		€	č	ň				5		74 d	VC	V •	-		÷		ñ		10		é,	4			7	2 2	ų Xi			14	1	42(131	9	148	7	4		157	50	7	õ	535	ы	<u>.</u>	Ť	- 6	5	4	

ranscripts
-associated 1
chaperone
HSP and
Table 3.7:

		Probe set	at	at	at	at	fat	at	at	hfat	at	at	at	at	at	at	at	at	at	at	fat	at at	at	at	at	at	at	at	at	at	at	at ot
		Prot	114373 at	166321 at	160442 at	98153_at	161238 f at	101011 at	93295 at	162279	160562 at	160102 at	98572 at	101955_at	92829	93277	95282_at	95359	98111	92571_at	161745 f at	100353	96564	97914_at	97309_at	97310 at	94210_at	94860_at	96668 at	93348 at	98106_at	108489 at
		Name	cell division cycle 37 homolog (S. cerevisiae) like	cell division cycle 37 homolog (S. cerevisiae) like	chaperonin subunit 2 (beta)	chaperonin subunit 3 (gamma)	chaperonin subunit 3 (gamma)	chaperonin subunit 4 (delta)	chaperonin subunit 5 (epsilon)	chaperonin subunit 6a (zeta)	chaperonin subunit 7 (eta)	chaperonin subunit 8 (theta)	DraJ (Hsp40) homolog, subfamily B, member 11	heat shock 70kD protein 5 (glucose-regulated protein)	heat shock protein 1 (chaperonin 10)	heat shock protein 1 (chaperonin)	heat shock protein 1, alpha	heat shock protein 1, beta	heat shock protein 105	heat shock protein 4	heat shock protein 4	heat shock protein 4	heat shock protein 8	heat shock protein, A	suppression of tumorigenicity 13	suppression of tumorigenicity 13	translocase of inner mitochondrial membrane 9 homolog (yeast)	translocator of inner mitochondrial membrane 17a	translocator of inner mitochondrial membrane 17b	translocase of inner mitochondrial membrane 22 homolog (yeast)	translocator of inner mitochondrial membrane 44	transforase of inner mitochondrial membrane 50 homolog (veast)
·· ····		Gene	4 Cdc37	1 Cdc371	1 Cd2	4 Cct3	3 Cd3	4 Cct4	3 Cct5	3 Cct6a	4 Cct7	4 Cct8	3 Dnajb11	5 Hspa5	8 Hspe1	6 Hspd1	5 Hspca	6 Hspcb	6 Hsp105	5 Hspa4	3 Hspa4	2 Hspa4	4 Hspa8	5 Hspa9a	4 St13	3 St13	2 Timm9	4 Timm17a	-1 Timm17b	4 Timm22	2 Timm44	3 Timm50
		change	I	I	I	œ	i	2	4	ļ	i	I	2	œ	£	o	£	œ	£	9	!	2	£	7	10	4	-	4	5	5	£	i
2		αβΤ c	2458	i	i	4222	i	9569	8930	1	i	i	7748	4820	9933	40749	5003	16381	2417	3169	i	633	9670	22207	2379	202	3387	3420	3158	856	1528	814
			2333	!	ļ	4778	ļ	7324	6461	!	ļ	!	5734	1665	11828	15223	2849	9236	1816	2729	ļ	373	5936	16930	2901	43	3896	3705	5347	530	968	80.5
	12 ^{did}	12 hr 🔊 T	1728	6678	5400	41825	9074	2460	6031	1195	10981	3704	5061	6519	8940	18366	1435	37352	2752	4616	3478	9440	10511	17368	12238	8597	10802	14107	11200	1124	22898	6187
	+Mix +H	2 hr 12	5767	7684	7919	5895	7295	6683	0522	2120	3107	8294	2374	9630	0059									74166	4017	4088	6481	49631	9137	1934	2895	8747
	N+ pro	-	6228			-												-								-	·	4			4,	
	+H2	, 12 hr	39			Ĩ.										÷.																
	+ H2 ^{b/d}	4 day						5754							.,	Č.	610	.,					Ì	Č.	Ì						Ì	
	Ŧ	12 hr		!	!	45071	!	7442									5978											Ē				
ĺ	d/d	t day	I	i	i	9113	i	3171	2059	i	i	i	11139	5624	36157	10209	1522	18594	966	1627	i	2013	12157	7623	5380	2566	15337	12138	4480	699	2888	i
	+H2 ^{d/d}	12 hr 4 day 12 hr		!	ł	5323	1	3358	1793	!	1	!	6389	2296	11764	8641	1234	6198	832	1488	ł	2655	4131	4604	2469	1758	11948	10669	4262	431	2212	1

Table 3.8: Nuclear import-associated transcripts

			ĺ		ĺ						Jam and		
H	2 ^{d/d}	+ H2	þíd	+H2 ^{b/d}	+Mix	+H2 ^{d/d}							
12 hr	4 day	12 hr	4 day	12 hr	12 hr	12 hr	γδ T	xβT	change	ۍ ا	Gene	Name	Probe set
1528	1010	1882	1064	10366	7514	974	837	544	-	11 0	1 Chc1	chromosome condensation 1	99138 at
!	i		I	14339	9753	229	!	i	1	8	3 Chc1	idensation 1	162775_at
362			204	2454	1198	381	2204	2632	ø	9	Ip04		95034 f at
112		1957	116	5646	4452	581	432	872	18	10	0 po4	importin 4	95035 at
4089	7383	-	5190	9131	6525	3007	1751	2104	0	e	po7		93970 at
!	i		1	5854	4086	1005	!	1	I	9	po7		164341 f at
;	i	!	i	10729	10329	4318	!	i	i	2	Nup62		160167_at
1	i	!	I		5726	1605	!	i	1	5	Nup62		166132 f at
1			i	31795	23523	12744	!	i	i	2	Nup62	nucleoporin 62	166447 f at
1318	1752	4152	994	8600	5590	1249	9052	7618	n	7 F	Ranbp1	RAN binding protein 1	98573 <u>r</u> at
2887			6527	35103	18428	3465	12690	14088	ø	10 F	Ran	RAN, member RAS oncogene family	102821 s at
7124	-	-	8879	47660	29324	5758	35107	46240	9	8	8 Ran	RAN, member RAS oncogene family	101254 at

transcripts
g
tion and apoptosis-associate
S.
S.
5
þ
Q
д
σ
and
ration
Ę.
Ξ
0
$\mathbf{P}_{\mathbf{r}}$
÷.
<u> </u>
ŝ
le
p,
صًا
E

	Probe set	104155 f at	104156 r at	93559_at	99027_at	112364 at	94048_at	97504_at	98067_at	95072_at	98132_at	92758_at	94384_at	102362 i at	102363 r at	103416_at	104712_at	102371_at	92248_at	92249 g at	102839 at	109752_at	103029 at	101065_at	95069_at
-		on factor 3	on factor 3	endonuclease 1		cell division cycle 25 homolog B (S. cerevisiae)	cell division cycle 34 homolog (S. cerevisiae)		cyclin-dependent kinase inhibitor 1A (P21)		0	ohatase 2	onse 3			otein kinase 6	cogene	uclear receptor subfamily 4, group A, member 1	uclear receptor subfamily 4, group A, member 2	nuclear receptor subfamily 4, group A, member 2	lase 1	ig protein	th 4	ear antigen	ognition protein 1
ix +H2 ^{dd}	Name	activating transcription factor 3	activating transcription factor 3	apuninic/apyrimidinic endonuclease 1	Bcl2-like 1	cell division cycle 25	cell division cycle 34	cyclin D2	cyclin-dependent kins	cytochrome c-1	cytochrome c, somatic	dual specificity phosphatase 2	immediate early response 3	Jun-B oncogene	Jun-B oncogene	mitogen activated protein kinase 6	myelocytomatosis oncogene	nuclear receptor subf	nuclear receptor subf	nuclear receptor subf	phospholipid scramblase	PIN2/TRF1-interacting protein	programmed cell death 4	proliferating cell nuclear antigen	structure specific recognition protein
- -	e Gene	6 Atf3	3 Atf3	9 Apex1	9 Bcl211	-22 Cdc25b	4 Cdc34	56 Ccnd2	4 Cdkn1a	2 Cyc1	7 Cycs	3 Dusp2	25 ler3	2 Junb	2 Junb	5 Mapk6	10 Myc	65 Nr4a1	7 Nr4a2	50 Nr4a2	17 Plscr1	5 Pinx1	-15 Pdod4	4 Pcna	4 Ssrp1
	change	9	7	1	4	ì	2	24	32	2	ო	4	16	ო	2	4	23	28	9	თ	16	i	÷	2	5
	αβ Τ	494	149	2548	1804	2752	1329	2576	721	14102	2066	4267	447	459	3013	1755	1222	2383	349	488	910	770	38258	4322	8037
		769	71	2297	1403	2123	591	1097	2483	18060	1564	7134	616	328	1854	1713	715	335	62	459	460	827	22628	3353	6059
+H2 ^{dd}	2 hr y	1189	1108	12042	2692	11606	3206	119	3847	37242	4286	7320	270	41868	37248	2386	819	139	584	116	996	5842	11176	1748	12265
+Mix	2 hr 12 hr ½ T	5041	2587	90426	13109	4496	5906	3031	11114	47163	27213	25847	6374	107768	119818	8086	6899	8071	1972	3685	11922	20868	2225	5370	31006
-H2 ^{bid}	2 hr 1	7660	3004	105754	23546	526	11226	6643	17137	60156	29726	23915	6667	76208	90391	11219	8172	9028	3831	5820	16739	27823	732	6308	51526
	day 1	3444	572	7363	5237	i	1955	552	30614	10483	8934	4124	1344	17966	18952	1851	789	080	610	563	1821	I	9722	2740	21999
+H2 ^{b4}	2 hr 4	7307	1325	18350	9190	ļ	3194	1830	6439	27225	13243	16348	1731	23388	27584	3314	5853	7056	2933	5300	6890	ł	2962	5702	14911
+H2 ^{d/d}	day 1	804	8	3140	1853	i	1931	170	2959	9579	10425	2784	1602	13777	17025	1274	392	831	86	192	808	i	22234	3221	5521
+H2	12 hr 4 day 12 hr 4 day 12 hr 12 hr 12 h	1126	185	1745	2150	ł	1817	78	202	11351	4926	4461	106	6878	11205	873	255	254	295	589	435	1	32152	2509	2969

Table 3.10: WNT-associated transcripts

	-	1017 5525 2996 780 780 780 7366 8337 11679 8337 11637	1920 25/3 25/2 1075 1544 5525 6154 1544 5525 6154 6494 780 2065 505 1679 1051 36521 7386 7348 36521 7386 7348 7738 71168 7738 71465	641 571 883 1933 1017 1078 - 196 226 1534 5255 6154 - 1033 9200 1017 1076 1076 - 1033 9200 2564 5255 6154 - 2037 5990 6494 780 1065 - 2037 5990 6494 780 1065 - 2037 5990 6494 780 1055 4613 7594 15571 38521 7396 7348 7026 15773 38521 7736 7348 7346 7027 5580 37445 77260 7348 7158 7028 37845 77290 11659 194 1037 85540 37857 11690 194	77/0 882 641 571 889 1925 1017 1018 1017 1017 1017 1017 1017 1018 1018 1016 1017 1016 1015 1015 1016 1016 1016 1016 1016 101
	1078 6154 2457 1085 1085 1085 1085 1084 1084 1184 1184 1184 1184 1184 1184	5521 707 1078 -2 5526 6154 -2 7896 2457 -1 1679 1055 -1 1679 1051 -2 7848 -2 7848 -2 11188 -11 1188 -1 1188 -1 1188 -1 1188 -1 1961 764 -2	1900 1.21/3 1.02/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 1.21/3 2.21/3 <td>641 571 383 1933 1077 1076 23 - 1033 9200 1544 1677 1076 23 - 1033 9200 2494 780 2451 - - 2033 9200 6494 780 2451 - - 2031 5600 6494 780 1065 - - 2033 9300 20096 29967 - - - 4613 7594 1554 3001 1679 1671 - - - 7005 3446 3525 5181 3003 1679 1671 - - 7005 3463 33346 7738 1671 3463 - - 7302 3006 6333 22061 961 764 - - 1302 3006 6333 22061 961 764 - - </td> <td>770 882 641 571 889 1925 1017 1078 22 </td>	641 571 383 1933 1077 1076 23 - 1033 9200 1544 1677 1076 23 - 1033 9200 2494 780 2451 - - 2033 9200 6494 780 2451 - - 2031 5600 6494 780 1065 - - 2033 9300 20096 29967 - - - 4613 7594 1554 3001 1679 1671 - - - 7005 3446 3525 5181 3003 1679 1671 - - 7005 3463 33346 7738 1671 3463 - - 7302 3006 6333 22061 961 764 - - 1302 3006 6333 22061 961 764 - -	770 882 641 571 889 1925 1017 1078 22
		1017 5525 25666 780 1679 7366 8837 1165 8861 961	14928 1017 14928 1017 1554 5525 20056 5996 6494 780 5070 1679 36570 1679 36570 1679 36510 8837 1 7728 1165 78190 8837 1	641 5/7 883 1920 1017 15/7 883 1920 1017 1003 9206 1524 5225 1003 9200 6444 780 1340 1871 505 1634 780 1340 1871 505 - 966 1340 1871 3657 - - 085 1577 33446 7810 1667 - 1302 1583 33346 7819 8637 1 - 1302 33346 5773 33446 7819 8637 1 1302 3006 6533 32061 8637 1 - <th>770 882 641 571 889 1923 1017 </th>	770 882 641 571 889 1923 1017
517 318 1928 517 319 1928 103 266 1554 10033 266 1554 1303 266 1554 1304 1873 506 1554 1340 1873 1563 1871 5070 1583 1871 5070 1554 3344 7819 15773 33846 78851 3006 653 22061	571 286 196 286 10033 9920 2033 9920 2034 1673 1540 1673 1540 1673 1544 1873 15543 33446 25573 33446 3006 6533				

transcripts
factor
I-like
Krüppe
11:
Table 3.1

12 hr 4 day 12 hr 12 hr 12 hr 76 T (36 T 465 191 1049 1271 2531 744 77 465 191 1049 1289 2772 7514 77 1051 1049 1888 2873 2842 11387 128 1051 1049 1888 2871 2832 2845 255 11422 1422 1432 1432 1432 1432 1432 1432	2 ^{bid} +Mix +H2 ^{did}			
166 84 85 145 1271 2531 444 75 -2 1320 465 191 104 12371 2544 775 -2 2640 1051 1049 1585 3255 2270 11387 12815 -3 2640 1061 1049 1586 3255 2240 12815 -3 1142 1422 1235 946 -5 1142 1237 1335 766 -5 - 1242 333 976 7803 -5 - 1142 1422 1237 1230 -5 - - 224 2303 9446 730 -5 - 1142 1422 1231 1230 -5 - 5261 2303 946 7	hr 12 hr 12 hr ½ T αβ T chang	je Gene N	ame	Probe set
1320 465 191 1046 1298 1298 1298 2772 7514 7759 -3 2640 1051 1049 1568 8282 2240 1381 1281 -3 2640 1051 1049 1588 2371 8552 2445 12815 -5 1558 2371 8552 2646 -5 1558 2371 8552 2648 -5 538 2771 8552 2648 -5 538 2741 7393 -5 538 2742 1381 -5 -5	2531 444 75		Kruppel-like factor 3 (basic)	100010 at
	1298 2772 7514 7759		topel-like factor 3 (basic)	100011_at
2640 1051 1049 1142 1325 2345 2508 -5 1142 1325 133 2745 7508 -5 1328 2308 9146 789	8425 24240 11387 12815		topel-like factor 3 (basic)	113288_at
1142 1432 1836 976 780 524 2808 6148 15332 12120	2671 8352 2845 2508		tppel-like factor 7 (ubiquitous)	104645_at
524 2808 6148 15382 12120	1432 1836 976		topel-like factor 7 (ubiquitous)	107020_at
	2808 6148 15382 12120		topel-like factor 7 (ubiquitous)	112898_at
	44979		tppel-like factor 13	160617 at

 Table 3.12: Activation-induced cell surface receptors

 **H2^{bd}
 *Mix

+ H2^{b/d}

+H2^{d/d}

12 hr	4 day	ır 4 day 12 hr 4 day	4 day	12 hr	12 hr	12 hr	yô T d	xβT d	shang	e Gene	Name	Probe set
Ī						11370	11150	36958	i	4 Btla	B and T hmphocyte associated	116608 at
363						2417	4252	14673	21	4 Cd5	CD5 antigen	93637_at
1622		·				5773	3681	15677	6	7 Cd6	CD6 antigen	92203 s at
687						5189	437	6221	13	4 Cd6	CD6 antigen	92204 at
2951	·	Ű				1878	2579	1287	23	40 Cd160	CD160 antigen	102272_at
187	86	3318	1052	4003	3533	136	132	620	9	29 Crtam	cytotoxic and regulatory T cell molecule	98334 at
446						1166	21	449	5	-2 Ctla4	cytotoxic T-lymphocyte-associated protein 4	97718_at
1477						1390	9724	3406	4	5 Ly6a	lymphocyte antigen 6 complex, locus A	93078_at
632						947	613	337	ø	7 Lag3	lymphocyte-activation gene 3	98392 at
88						2055	156	215	5	8 Pdcd1	programmed cell death 1	98836_at
							T ₂ L	1.01			ad turns contracts	
							l ac	1 401C 2.15		CD1-associated	ed transcripts	

	Probe set	101897 g at	103422_at	101896 at	97114_at	
	ame	1d1 antigen	CD1d1 antigen	rtd2 antigen	saposin	
	Gene			-	-3 Psap pro	
	change	2	-18	-4	ې ۲	
	αβ Τ		4190		12928	
	γδ Τ		5661		11622	
+H2 ^{d/d}	12 hr		6954			
+Mix	12 hr	7417	1518	315		
+H2 ^{b/d}	12 hr	-	342		6937	
+H2 ^{btd}	hr 4 day	2272 3058	400 483		2449 5265	
	ay 12		3348	758		
+H2 ^{d/d}	12 hr 4 da		7178 3			

anscripts.
d tr
n-associate
abolisn
: Met
e 3.14
Tabl

	Probe set	99335 at	94375_at	139274_at	100574 f at	92637 at	94438_at	97833_at	97834 q at	1135/0_at	1604230_at	101531 at	101532 g_at	99566 at	101214 <u>f</u> at 03346 of	101388 at	160091 at	92599 at	129223 at	169423 i at	99042 al	101471 at	96066 s at	93488_at	108574_at	960/2_at	101990_at	104700_at	98459_at	113935_at	93237 s at	104547 at	100066_at	109735_at	1.591.20_dt 1675.58_ot	100046_at	161897 <u>f</u> at	95507_at	1010.00 at	95553 at	95554 at	140815 at	98999_at	1123333 at 1627708 24	98435 at	99038 at	99039 q at	98390 at	105630 at	100578_at 162717_at
	Enzyme #	2.7.1.1		5910	8.1.00	2.7.1.11					41213	21-41-4		53.1.1	12112	21.4.0	5421		4.2.1.11			27140	01111		4.3.1.17	1.1.1.27		2.1.2.1		0 4 4 E	64117	1.5.1.3	2.1.2.2	1515		1.5.1.15	2.7.6.1			2.4.2.14		4.1.1.21	4.3.2.2	0100	6344			1.1.205		6311
	lsoform	-	2	ო		liver	muscle	platelet			4	: @	1		se	- 0	1	2	non-neuron		misch	liver RBC	muscle			A chain B choin	C chain	0.018					ase	(NADP+)		(NAD+)	÷	ç	٧			e		e toritrylliaristerase	muscle	non-muscle		÷		77
	Name	Hexokinase		Climen & shoe shafe incommen		6-phosphofructokinase					Enictose bischosobate alchlase			Triosephosphate isomerase	Glyceraldehyde 3-phosphate dehydrogenase		Phosphodvcerate mutase	· · · · · · · · · · · · · · · · · · ·	Phosphopyruvate hydratase			Purivate kinase		Serine racemase	L-serine ammonia-lyase	L-lactate dehydrogenase		Glycine hydroxymethyltransferase		The societ data is software		Dihydrofolate reductase	Phosphonibosylghycinamide formyttransferase	Methylenetetrahydrofolate dehydrogenase		Methylenetetrahydrofolate dehydrogenase	Ribose-phosphate diphosphokinase 1			Amidonhos nho ribos vitransferase		Phosphoribosylaminoimidazole carboxylase	Adenylosuccinate lyase	Prios provincios yramin ournigado recar co xamiloe normyniaris rerase	Adenviosuccinate svrithase			IMP dehydrocenase		CMD crathers
	Gene	Hk1	HK2	TK3	ebi	PfkI	Pfkm	Pfkp			AH01	Aldn2		Tpi	Gapd Dok1	Paka	Poam1	Pgam2	Eno1	Enco	Eno3	Pkir Pkir	Pkm2	Srr	Sds	Ldh1		Shmt1		T. inte	siliki	Dhfr	Gart	Mthfd1		Mthfd2	Prps1			Priat		Paics	Adsl	AUC	Adss	Adss2		Imodh1		Impdh2
	je	2	12	41	- C	1-	ů	7	ب	n d	7	. c	4	2	00	٩ų) (n	<u>ب</u>	-	÷.	- ·	10	101	8	0,		•	- 0	4	Ϋ́	- c.	- 1	4	σ,	• •	- 2	-	- •	4 C	10	5	2	4	- 9	4	2	01	0 0	10	5
	chanç	-	ω	i		2	-	n	2	i	! 1	<u>.</u>	1	-	00	ч с	' i	7	i	1		e.	ი	17	1	m c	4 4	? -	10	i •		0	4	i	i !	10	I	n	!	~	-	i	2	i	Ŷ	2	n	0	1	5
ĺ	αβ Τ	1000	167	2143	10/ 10	1724	163	88 83	3452	1809	1	8	325	299	9936 1360	82	5 1	22	14328	1 CC		45	4595	3137	1819	18/44	100	38	210	1367	1500	92	9035	1210	470	29763	i	1255	i	137	82	267	5174		183	3626	1957	231	7349	1898
	T	2082	114	2478	0240	2735	274	487	1513	2391		37	619	692	7637	123	1	50	9287	46.4	404	3 60	2858	2992	1607	13934	11/2	115	556	1392	060	102	6795	<u>8</u>	404	21581	I	1048	!	99	51	536	3111	202	325	2751	1398	354	7457	1161
	12 hr yð	2091	1591	10056 20006	00087	27958	1489	11098	16519	1647	0407 2727	509	397	36952	21547 8600	385	8213	51	36143	3432	1088	257	3444	5443	3520	250637	101	88	522	2822	740	112	2888	3378	1200	6734	1390	8519 406	021 2766	202	116	1087	1694	50C	313	9190	8392	1311 1959	13708	4123
	2 hr 1	3790	17427	1835 77070	2/120	32153	740	12306	15802	30/3	4222 0311	424	521	48722	34664	7 Joci	15751	46	42587	2298 4766	2420	225	5572	31909	3503	338405	0/0	249	2241	3428	1687	91	10751	21996 660	200	49327	1189	10442	3C3C	629	83	395	7228	01.0L	109	17125	13434	1965 2148	17073	13138
	12 hr 1	ŝ	19313	5642 20066	20000 100566	29325	513	10607	15566	5314	4383 0775	206	8	60531	40321 18087	125	20951	45	45541	3016 2760	2/00	397	8272	42540	6122	339241 576	0/0	13.0	1993	964	2407	80	12634	31087	17.00	33735	1289	12632	104	240	583	2533	2070	1501	71	21452	16112	6/90 3997	23184	20193
	4 day 1	2902	15125		20002	4892	690	8546	20160	i	ii	264	216	17140	24432 7607	96	i	44	i	1445	C##1	129	1005	3555	1	49909	350	90 02	632	i	15630	310	4971	i	ii	37944	i	1391	i	365	59	i	1540	i	608	10100	5151	1 665	i	8157
711-	12 hr 4 c														23549													3 64																				1310		
	day 1	2167	9924	1000	77164	6442	1163	14529	25643	i	1	91	95	15986	21500	51	; 1	54	i	1 202	12.76	34	2942	2944	1	89/12	200	94	633	18	4454	91	6118	ī	1	26048	i	1525	i	957	154	i	2032	i	80	4316	1590	1258	3	1777
7117	12 hr 4 day ¹	2564	2313		247050	3332	359	2498	5307	!					9747																																			

Chapter 4: Antigen-specific Activation of Splenic $\gamma\delta$ T cells Leads to Broad Activation of B cells

Introduction

 $\gamma\delta$ T cells are one of the least understood components of the immune system. While they appear to contribute uniquely to host immune competence, it is not clear what mechanisms are associated with this. Some experiments suggest that $\gamma\delta$ T cells contribute to a fast-acting early immune response (Boismenu and Havran 1997; Hayday and Tigelaar 2003). For instance, $\gamma\delta$ T cell deficiency impairs the ability of mice to resist primary Listeria monocytogenes infections (Hiromatsu, Yoshikai et al. 1992; Skeen and Ziegler 1993). In addition, the presence of $\gamma\delta$ T cells appears to be important in the control of virus levels during the first week of vaccinia virus infection (Selin, Santolucito et al. 2001). It has also been observed that $\gamma\delta$ T cells act late in immune responses. In murine models of Influenza infection, $\gamma\delta$ TCR mRNA-positive cells have been found to accumulate in the lung after an initial acute-phase $\alpha\beta$ T cell response (Carding, Allan et al. 1990). The late appearance of $\gamma\delta$ T cells has led to the suggestion that these cells contribute to the downregulation and resolution of the local immune responses (Carding and Egan 2000) as is evidenced during *Eimeria* infection of the small intestine where $\gamma\delta$ T cell-deficient mice show a more severe pathology than RAG2-deficient mice (Roberts, Smith et al. 1996).

It has been proposed that late-acting $\gamma\delta$ T cells recognize self antigens and there is no evidence that early-acting $\gamma\delta$ T cells are pathogen specific. In addition, it has been observed that $\gamma\delta$ T cells have the ability to recognize stress-induced self antigens, which has led to the idea that $\gamma\delta$ T cells can act as sensors of physiological disturbance (Allison and Havran 1991). Further, it is recognized that the $\gamma\delta$ TCR can recognize antigens directly without a requirement for antigen processing and presentation (Chien, Jores et al. 1996), which indicates that $\gamma\delta$ T cells can respond to cells directly to initiate cellular immune responses without a requirement for prior antigen degradation or specialized antigen presenting cells.

Despite these advances, it has been difficult to define antigen-specific $\gamma\delta$ T cell responses in either pathological or normal physiological processes. This is largely because it is unclear as to what most $\gamma\delta$ T cells recognize. In terms of the possible

functions of $\gamma\delta$ T cells during immune responses, early studies have shown that $\gamma\delta$ T cells are cytolytic in redirected lysis assays (Borst, van de Griend et al. 1987; Brenner, McLean et al. 1987). Other studies have indicated that $\gamma\delta$ T cell lines and clones are cytolytic and that they can secrete cytokines, chemokines, and growth factors after stimulation with antibodies to the $\gamma\delta$ TCR complex or PMA (Cron, Gajewski et al. 1989). While these experiments have shown the functional potential of $\gamma\delta$ T cells when triggered through their TCRs, it has been demonstrated that prolonged in vitro cultures (weeks to months) alter the nature of $\gamma\delta$ T cell responses profoundly. Thus, it is unclear which of these responses are mounted when $\gamma\delta$ T cells encounter cells bearing their cognate antigens *in vivo*. Further, while differential cytokine expression including that of IFNy and IL-4 by $\gamma\delta$ T cells has been observed in pathological situations including experimental asthma models (McMenamin, Pimm et al. 1994; Zuany-Amorim, Ruffie et al. 1998) and in coxsackievirus B3-induced myocarditis in BALB/c mice (Huber, Graveline et al. 2001), it has been shown that $\gamma\delta$ T cells can also be activated by anti-Thy1 and anti-Ly6C antibodies (Cron, Gajewski et al. 1989). Thus, it is unclear what $\gamma\delta$ T cell responses are antigen-specific.

In order to study $\gamma\delta$ T cell activation through the $\gamma\delta$ TCR, it is helpful to use an antigen that is a known ligand of $\gamma\delta$ T cells. Even though the full scope of $\gamma\delta$ T cell ligands has yet to be determined, it has been found that two independently-derived murine $\gamma\delta$ T cell clones, G8 and KN6, recognize the MHC class Ib molecules T10 and T22 (Ito, Van Kaer et al. 1990; Schild, Mavaddat et al. 1994). The use of T22^b tetramers has shown that as many as 0.2 - 2% of $\gamma\delta$ T cells in normal mice appear to recognize these molecules and the direct binding of the V γ 2/V α 11 G8 $\gamma\delta$ TCR to T10 and T22 has been demonstrated (Crowley, Fahrer et al. 2000). Although structurally similar to MHC class I molecules, neither T10 nor T22 appear to present peptides (Kaliyaperumal, Falchetto et al. 1995) or any other ligands.

Here, we utilize mice that are transgenic for the G8 $\gamma\delta$ TCR (Dent, Matis et al. 1990) and are, thus, a source of primary $\gamma\delta$ T cells with a known antigen specificity, as well as the 7H9 monoclonal antibody that identifies T10/T22-expressing cells, to analyze antigen-specific $\gamma\delta$ T cell responses. We find that during a 24 hour coculture of G8 $\gamma\delta$

TCR-transgenic T cells and H2^{b/d} BALB/c splenic cells, not only $\gamma\delta$ T cells, but also B cells become activated as is evidenced by their expression of CD69, B7.2, and MHC class II. This is in large part due to the synergistic effects of IFN γ and IL-4 produced by the activated G8 $\gamma\delta$ T cells. In addition, the expression of the G8 ligands, T10/T22, is upregulated on G8 $\gamma\delta$ T cells, B cells, and other cells. Our results suggest ways through which $\gamma\delta$ T cells sustain and amplify their responses in an antigen-specific manner as immune responses progress and provide mechanisms for enhancing local immune responses where $\gamma\delta$ T cells may provide general non-cognate T cell help to B cells that may be of particular importance in B cell activation.

Materials and Methods

Mice

All experiments were conducted under protocols approved by the IACUC (A-PLAC) of Stanford University. G8 mice on a BALB/c background were crossed with RAG2^{KO} mice on a BALB/c background (Taconic) to obtain G8 RAG2^{KO} BALB/c mice. The presence of the transgene was identified by PCR using the following primers (5'->3'): *FWD-G8VD-71* TAC TTC TGT GCT GCT GAC ACG; *REV-G8J-71* CCA AAG ACG AGT TTG TCG GTA; *FWD-RAG2-307* CAT TCC ATT GAC GTG GTG TAT AGT; *REV-RAG2-307* GGG GAA GGT CCA CTC TTA TTC TAT. BALB/c mice were crossed with BALB.B mice (Harlan) to obtain H2^{b/d} BALB/c mice that express both the *b* and *d* haplotypes on a BALB/c background.

G8 γδ T cell Activation

G8 RAG2^{KO} BALB/c splenocytes were cultured with a five-fold excess of BALB/c or H2^{b/d} BALB/c splenocytes in RPMI 1640 containing 10% FCS, non-essential amino acids, sodium pyruvate, β -mercaptoethanol, and glutamine/penicillin/streptomycin at 37°C. The final concentration was 10⁷ cells/ml. Cells were cultured in 24-well flat-bottom plates containing 600 µl of cells per well or 96-well Vee-bottom plates containing 200 µl of cells per well. For Transwell studies, 6.5 mm Transwell inserts with 0.4 µm pore sizes (Corning) were added to the wells of the 24-well plates and 100 µl of BALB/c cells were added into the Transwells.

Cytokines and ELISA Analyses

Recombinant IFN γ and IL-4 (PeproTech, Inc.) were used at the indicated concentrations. Reagents for IFN γ , IL-2, and IL-4 ELISAs were obtained from eBioscience. Supernatants were tested at the original concentrations for the IL-4 ELISAs and were also diluted in assay diluent (eBioscience) for the IFN γ and IL-2 ELISAs, because the concentrations of these cytokines in the supernatants often exceeded the detectable range.

To deplete supernatants of cytokines, neutralizing sodium azide-free antibodies were added for at least 3 hours prior to their addition to cells. The neutralizing antibodies were anti-mouse IL-2 (clone S4B6, rat IgG_{2a}, BD Biosciences Pharmingen), anti-mouse IL-4 (clone 11B11, rat IgG₁, BD Biosciences Pharmingen), anti-mouse IFN γ (clone XMG1.2, rat IgG₁, BD Biosciences Pharmingen), anti-mouse MIP-1 α (goat IgG, R&D Systems), anti-mouse MIP-1 β (goat IgG, R&D Systems), and anti-mouse Lymphotactin (goat IgG, R&D Systems). The antibodies against IL-2, IL-4, and IFN γ were used at 5 µg/ml while the polyclonal antibodies against MIP-1 α , MIP-1 β , and Lymphotactin were used at 0.5 µg/ml.

To assay effects on only B cells, B cells were purified using anti-mouse CD19 MicroBeads, LS columns, and MidiMACS magnetic separators (Miltenyi Biotec) using the manufacturer's recommended protocol. Briefly, 100 μ l of beads were mixed with 900 μ l of culture media containing 10⁸ splenocytes and incubated at 6°C for 15 minutes. Afterwards, the cells were washed once and resuspended in 500 μ l of media. CD19⁺ cells were then enriched by passing the cells through the columns and collecting the bound cells.

Flow Cytometry

HBSS (Ca²⁺ and Mg²⁺ free) containing 2% FCS, 5 mM EDTA, and 0.05% sodium azide was used to wash cells. Staining was performed by pre-incubating cells in this solution with 5% normal mouse serum, 5% normal hamster serum, and 0.5 μ g/ml FcBlock (clone 2.4G2, BD Biosciences Pharmingen) and then adding the appropriate antibodies. Propidium iodide was included during the last wash to exclude dead cells. Biotin, FITC, PE, Allophycocyanin, and Cy7PE conjugates were used for staining. The Cytofix/Cytoperm Plus kit with GolgiStop (Monensin) (BD Biosciences Pharmingen) was used for intracellular cytokine staining according to the manufacturer's protocol. $\gamma\delta$ T cells were stained using clone GL3 or the V γ 2-specific clone UC3-10A6 (BD Biosciences Pharmingen). B cells were stained with antibodies to either CD19 (clone 6D5) or B220 (clone RA3-6B2). Additional stains were for IFN γ (clone XMG1.2; BD Biosciences Pharmingen), B7.2 (clone GL1; BD Biosciences Pharmingen), CD44 (clone IM7; BD Biosciences Pharmingen), CD69 (clone H1.2F3; BD Biosciences Pharmingen), PD-1 (clone J43; eBioscience), CD223/Lag-3 (clone C9B7W; BD Biosciences Pharmingen), and for T10/T22 (clone 7H9 (Crowley, Fahrer et al. 2000)). Flow cytometry was performed on either a BD LSR or a BD FACScan and data was analyzed using FlowJo software (Tree Star, Inc.). Cells were sorted on either a modified Cytomation MoFlo 11-color sorter or a BD Vantage SE/DiVa.

RT-PCR

Primers for CD45 (Virts, Barritt et al. 1998), IFNγ (Huang, McClellan et al. 2002) and IL-4 (Noma, Sideras et al. 1986) were based on published sequences. The sequences of the other primers were as follows (5'-3') and were designed to span at least one intron: *FWD-TCRβC* GTT TGA GCC ATC AAA AGC AGA; *REV-TCRβC* AGG ATC TCA TAG AGG ATG GT; *FWD-TCRδC* ACC AGA ACC TGA AAA TGA CAC A; *REV-TCRδC* CTG AAG CAC TGA GAA GTT GGA A; *FWD-GranzymeA* TGA CTG CTG CCC ACT GTA AC; *REV-GranzymeA* AAA TCT CCC CCA TCC TGC TGC TA.

RNA was isolated using Trizol (Invitrogen) and reverse transcribed using SuperScriptII (Invitrogen). SureStart Taq (Stratagene) was used for all PCR reactions. Reactions were initially denatured at 94°C for 10 minutes and then subjected to cycles of PCR using the following conditions: 1 minute denaturing at 94°C, 1 minute annealing at 55°C, and 2 minutes of extension at 72°C. The reactions were then incubated for an additional 10 minutes at 72°C.

Results

A T10/T22-Specific γδ T cell Activation System

Although T10 and T22 are less polymorphic than classical MHC class I molecules, there are differences between different alleles. The G8 $\gamma\delta$ T cell clone, which was derived from BALB/c nude mice that had been immunized with B10.BR splenocytes, recognizes the T10 and/or T22 alleles present in C57Bl/10, B10.BR, and B10.S mice (Bluestone, Cron et al. 1988). G8 $\gamma\delta$ TCR transgenic mice have been maintained on the BALB/c background because these mice do not have a functional gene encoding the constitutively-expressed T22 molecule (Ito, Van Kaer et al. 1990) and only express the activation-induced T10 molecule of the *d* haplotype, which is a non-stimulating allele of T10 for G8 $\gamma\delta$ T cells. Thus, the transgenic $\gamma\delta$ T cells appear to be naïve in BALB/c mice.

In order to study antigen-specific $\gamma\delta$ T cell responses, we first crossed G8 BALB/c mice with RAG2^{KO} BALB/c mice in order to generate G8 RAG2^{KO} BALB/c mice that are deficient in B cells, $\alpha\beta$ T cells, and $\gamma\delta$ T cells of other specificities. We then cocultured splenocytes from G8 RAG2^{KO} BALB/c mice with splenocytes from H2^{b/d} BALB/c mice generated by crossing BALB/c mice with BALB.B mice. H2^{b/d} BALB/c splenocytes were chosen to serve as stimulator cells for the G8 RAG2^{KO} BALB/c splenocytes because they express the G8-stimulatory *b* alleles of T10 and T22 in addition to the non-stimulatory T10^d. In addition, H2^{b/d} lymphocytes should not be alloreactive against H2^d-expressing cells in the G8 RAG2^{KO} BALB/c spleen.

After 24 hours of coculture, activated G8 $\gamma\delta$ T cells showed a 10 to 100-fold reduction in cell-surface $\gamma\delta$ TCR levels (*Figure 4.1A*), a gradual increase in cell size (*Figure 4.1B*), and increased expression of the very early activation marker CD69 (*Figure 4.1A*) as well as of CD44, CD223/Lag-3, and PD-1 (*Figures 4.1C, D* and *E*). On the other hand, T10^d-expressing BALB/c stimulator cells did not lead to the activation of G8 $\gamma\delta$ T cells.

γδ T cell Activation Leads to B cell Activation Through Soluble Factors

Unexpectedly, we found that, in addition to the G8 $\gamma\delta$ T cells, B cells also became activated in this coculture system based, initially, on their expression of CD69. This was not observed when H2^{b/d} BALB/c splenocytes were cultured alone or cocultured with RAG2^{KO} BALB/c splenocytes (*Figure 4.2A*) and indicated that the activation of G8 $\gamma\delta$ T cells was necessary for the observed B cell activation. In contrast, there was no observable increase of CD69 expression on $\alpha\beta$ T cells.

To test if B cell activation requires cell-to-cell contact, transwell assays were performed. G8 RAG2^{KO} BALB/c splenocytes were co-cultured with H2^{b/d} BALB/c splenocytes in the lower chamber of the transwell and additional BALB/c splenocytes were added to the upper chamber. After 24 hours, we found that some of the B cells in the transwell that were not in direct contact with the activating G8 RAG2^{KO} BALB/c γδ T cells also upregulated their expression of CD69, albeit to a lower level than the B cells in the lower chamber. This may have been due to the fact that diffusion was required for the soluble factor to move from the bottom of the well to the Transwell. There was a 1 mm separation between the cells in the well and the cells in the Transwell. The average squared distance for one-dimensional diffusion is given by 2*D*t. For a cytokine-sized molecule in water, the square root thereof leads to a value of 1 mm per hour and, thus, about a third of the cytokines released at any given time will appear in the Transwell after one hour (\sim 32% of the area of a normal curve is beyond one standard deviation unit; one standard deviation unit is about equal to the root of the average squared distance: diffusion leads to a normal distribution). As expected, the expression of CD69 on B cells in the upper chamber was not induced when G8 RAG2^{KO} BALB/c splenocytes were incubated with BALB/c splenocytes in the lower chamber.

Consistent with these results, B cells could be activated to express CD69 by culturing them in supernatants taken from cocultures containing G8 RAG2^{KO} BALB/c and H2^{b/d} BALB/c splenocytes (*Figure 4.2B*). On the other hand, B cells incubated in the combined supernatants from separate cultures of G8 RAG2^{KO} BALB/c and H2^{b/d} BALB/c splenocytes did not increase their levels of CD69 expression, indicating that

112

coculture was required. Thus, B cell activation occurred through the activation-induced production of one or more soluble factors.

Previously, we found that transcripts for IFN γ , IL-2, Lymphotactin, and MIP-1 α were induced in activated G8 $\gamma\delta$ T cells (*data not shown*). Therefore, to identify the soluble factors responsible for inducing B cell activation, we cultured splenocytes in the supernatants taken from cocultures of G8 RAG2^{KO} and H2^{b/d} BALB/c splenocytes that had been depleted of IFN γ , IL-2, Lymphotactin, MIP-1 α , MIP-1 β , or combinations thereof using neutralizing antibodies. We found that only the inclusion of anti-IFN γ reduced the level of CD69 induction on B cells and the effect was only partial. This suggested that there were one or more factors produced in the stimulation assay that had not been identified. Since IL-4 production has been reported in systems where $\gamma\delta$ T cells are found to be activated and IL-4 was first identified as a B cell stimulating cytokine (Noma, Sideras et al. 1986), we assayed whether IL-4 was made in our co-culture system.

ELISA analyses showed that between 14 and 68 (average 45) pg/ml of IL-4 was in the supernatants following one day of $\gamma\delta$ T cell activation. In comparison, there was between 1 and 16 (average 3.5) ng/ml of IFN γ and between 2 and 4.5 ng/ml (average 3) of IL-2. Thus, a low amount of IL-4 was made in our system; albeit, at levels up to two orders of magnitude below those of IFN γ and IL-2.

As with IFN γ , the depletion of IL-4 from the coculture supernatants reduced their ability to induce CD69 expression on B cells (*Figure 4.2B*). Significantly, when both IFN γ and IL-4 were depleted, the supernatant failed to induce CD69 expression on B cells. Both the anti-IFN γ and anti-IL-4 antibodies were of the same isotype and both were needed for the observed effect, which indicated that the effect was not due to the isotype of the antibody. Taken together, these results indicate that B cell activation was primarily induced by the combined effect of IFN γ and IL-4.

We then tested whether the production of IFN γ and IL-4 was also responsible for CD69 expression on B cells during the cocultures. Neutralizing antibodies against IFN γ and IL-4 were included in the coculture of G8 RAG2^{KO} BALB/c and H2^{b/d} BALB/c splenocytes. We found that the inclusion of antibody to either of these two cytokines led to a reduction in the amount of CD69 expressed by B cells and the inclusion of both

antibodies led to an even greater reduction in CD69 staining (*Figure 4.2C*). However, a low level of CD69 induction on B cells remained that may have been due to directed cytokine secretion or other factors. Taken together, these experiments suggest that IFN γ and IL-4 induce CD69 expression by B cells but do not rule out the possibility that activation through other molecules such as T10 and T22 may also lead to increased CD69 expression by B cells.

Since the removal of IFN γ and IL-4 was found to abolish B cell activation in our system, we tested whether rIFN γ and rIL-4 could stimulate B cells. We found that using both of these cytokines together led to over 4-fold more CD69⁺ B cells than when each of these cytokines was used alone – even at very high concentrations (*Figure 4.2D*). A titration of rIFN γ and rIL-4 (*Figure 4.2E*) indicated that these cytokines synergized to induce CD69 expression on around 80% of B cells compared to around 20% of B cells induced by either cytokine alone for both BALB/c and C57Bl/6 backgrounds.

The Expression of B7.2 is Upregulated on Splenic B cells in the Coculture

24 hour G8 RAG2^{KO} BALB/c and H2^{b/d} BALB/c cocultures and supernatants thereof also led to the upregulation of B7.2 on B cells (*Figure 4.3A*). rIFN γ and rIL-4 were thus tested for their ability to induce B7.2 expression on B cells (*Figure 4.3B*). IL-4 appeared to be more effective than IFN γ . Additionally, a titration of these cytokines (*Figure 4.3C*) revealed that while IL-4 was more effective than IFN γ at upregulating B7.2, there was also a synergism between the two. In addition to B7.2, the supernatants were also observed to upregulate levels of MHC class II (*data not shown*).

The Expression of T10/T22 is Upregulated on Splenic Cells in the Coculture

While T22 is constitutively expressed, the expression of T10 is induced through the activation of cells (Crowley, Fahrer et al. 2000). In the coculture system using T10/T22^b-expressing stimulator cells, an upregulation of T10/T22 on G8 $\gamma\delta$ T cells and B cells became apparent after 48 hours (*Figures 4.4A* and *B*). In contrast, the expression of CD69, CD223/Lag-3, and PD-1 on $\gamma\delta$ T cells had already peaked after 24 hours (*Figure 4.1*). This is similar to what we reported previously for $\alpha\beta$ T cells, where antigen recognition-induced upregulation of T10/T22 was not observed until after 60 hours of incubation (Crowley, Fahrer et al. 2000). When rIFN γ and rIL-4 were tested for their ability to upregulate T10/T22 on B cells, only rIFN γ led to higher levels (*Figure 4.4C*). In addition, supernatants of activated $\gamma\delta$ T cells were capable of inducing T10/T22 expression by B cells in an IFN γ -dependent manner (*data not shown*).

Activated γδ T cells Produce IFNγ and IL-4

To determine the kinetics of IFN γ , IL-2 and IL-4 production, we measured their transcripts by RT-PCR 0, 1, 2, 4, 6, 11, and 25 hours after initiating the cocultures (*Figure 4.5A*). The expression of CD45 was also analyzed because its levels were found to remain mostly unchanged following activation, although there were some changes in the isoforms thereof. IFN γ and IL-4 transcripts were found to increase over the course of 25 hours of activation. IL-2 transcripts were also found to increase but reached a peak level of production around 11 hours and then declined by 25 hours, which was in agreement with its detected levels in the supernatants (*data not shown*).

In order to determine whether IFN γ and IL-4 are made by G8 $\gamma\delta$ T cells in this stimulation system, we cocultured G8 $\gamma\delta$ T cells with T10/T22^b-expressing splenocytes for 12 hours instead of the previously-assayed 24 hours because, at this timepoint, the majority of G8 $\gamma\delta$ T cells still had clearly-detectable levels of surface $\gamma\delta$ TCRs that made it possible to purify G8 $\gamma\delta$ T cells by FACS sorting. Allophycocyanin-labeled antibodies to the $\gamma\delta$ TCR were then used to identify $\gamma\delta$ T cells and FITC-labeled antibodies to 2B4, CD4, CD19, F4/80, Mac1, NK1.1, and to the $\alpha\beta$ TCR were used to identify $\alpha\beta$ T cells, B cells, NK cells, monocytes, and macrophages. FITC⁺ cells were removed using anti-FITC microbeads and the remaining cells were doubly sorted for live cells expressing the $\gamma\delta$ TCR. After the first sort, a purity of 99.1% was obtained that was further increased to above 99.7% through the second sort. The sorted activated G8 $\gamma\delta$ T cells were found to express transcripts for both IFN γ and IL-4 (*data not shown*).

We then determined if $\gamma\delta$ T cells or cells other than $\gamma\delta$ T cells were responsible for the majority of IFN γ and IL-4 transcripts in the coculture. After 24 hours of activation, cDNA was prepared from FACS-purified $\gamma\delta$ T cells. cDNA was also prepared from sorted B cells, $\alpha\beta$ T cells, and *other* cells that stained for neither the $\gamma\delta$ TCR, the $\alpha\beta$ TCR, B220, nor high levels of CD69. These other cells included NK cells, macrophages, and dendritic cells.

RT-PCR was conducted on the sorted cell populations (*Figure 4.5B*). The majority of transcripts for IFN γ were detected in the sorted $\gamma\delta$ T cells. The expression of IFN γ by activated $\gamma\delta$ T cells was confirmed by intracellular cytokine staining (*Figure 4.5C*). IFN γ was also expressed to a lower extent by cells in the *other* population. It is possible that this population included $\gamma\delta$ T cells that downregulated their $\gamma\delta$ TCRs but did not express very high levels of CD69.

Transcripts for IL-4 were detected in the sorted $\gamma\delta$ T cells. Similar to IFN γ , there was also a reduced level of IL-4 expressed in the *other* population. Again, this may have been due to contaminating $\gamma\delta$ T cells that downregulated their surface $\gamma\delta$ TCR levels. Approximately 10 times more cells were present in the $\gamma\delta$ T cell population than in the *other* population during the sort so even identical amounts of transcripts in both populations would suggest that $\gamma\delta$ T cells are responsible for 10 times more IL-4 production than the *other* population, assuming that the translation of IL-4 transcripts in both populations is equally efficient. It has been reported that activated splenic $\gamma\delta$ T cells from KN6 BALB/c mice express IFN γ but do not express IL-4 (Kawaguchi-Miyashita, Shimada et al. 2000). This may have been due to their use of plate-bound anti-V γ 4 antibody as opposed to our use of ligand-expressing splenocytes.

Transcripts for Granzyme A, which appear to be constitutively expressed by $\gamma\delta$ IELs (Fahrer, Konigshofer et al. 2001), were also detected in the activated G8 $\gamma\delta$ T cells and were also detected in the *other* population. This indicated that this population likely contained NK cells, which are know to express cytotoxic molecules like Granzyme A.

The use of primers that amplify all isoforms of CD45 (Virts, Barritt et al. 1998) indicated that activated G8 $\gamma\delta$ T cells expressed mostly the short RO isoform, which is characteristic of activated lymphocytes, while B cells, as expected, expressed mostly the large B220 isoform. $\alpha\beta$ T cells expressed both the intermediate RB and short RO isoforms. Cells that were classified as *other* cells expressed both the RB and RO isoforms.

Discussion

Despite the observations that $\gamma\delta$ T cells and $\alpha\beta$ T cells are capable of similar effector functions, such as cytotoxicity and cytokine secretion, the contribution of $\gamma\delta$ T cells to host immune competence is clearly distinct from that of $\alpha\beta$ T cells. One major difference between $\alpha\beta$ T cells and $\gamma\delta$ T cells that may be responsible for this is their antigen recognition requirement (reviewed in (Chien, Jores et al. 1996)). Unlike $\alpha\beta$ T cells, $\gamma\delta$ T cells are not limited to recognizing antigens that are processed first and then presented by MHC molecules. Therefore, $\gamma\delta$ T cells have the potential to be stimulated by many different types of cells.

Here, we analyzed the responses of G8 transgenic T cells to spleen cells that expressed the G8 $\gamma\delta$ TCR ligands, T10^b and T22^b. In the spleens of *b* haplotype mice, almost all cell populations express T10/T22 and some of the highest baseline levels are found on B cells (*data not shown*). We found that in our coculture system, T10/T22 levels are induced most prominently on B cells and G8 $\gamma\delta$ T cells after activation. This suggests that during immune responses, the T10/T22-reactive $\gamma\delta$ T cells can sustain, enhance and amplify as well as regulate their responses by increasing the expression of their ligands and recruiting and activating new cell types to serve as additional stimulator cells. Such a mechanism would be unique to $\gamma\delta$ T cells because of their lack of a requirement for special antigen presenting cells and may compensate for the paucity of $\gamma\delta$ T cells compared to $\alpha\beta$ T cells.

Along this line, we have previously shown that T10/T22 can be induced on $\alpha\beta$ T cells and B cells upon antigenic stimulation (Crowley, Fahrer et al. 2000). Our results here show that while T10/T22-induction on $\gamma\delta$ T cells requires cell-to-cell contact, T10/T22-induction on B cells can also be obtained by IFN γ produced by activated $\gamma\delta$ T cells.

One important observation is the early production of IL-4 by activated G8 $\gamma\delta$ T cells. Although the Thy-1^{dull} subset of thymic $\gamma\delta$ T cells has been found to produce IL-4 (Azuara, Grigoriadou et al. 2001), it has been reported that no IL-4 was detected when G8 clones (Cron, Gajewski et al. 1989) or KN6 BALB/c splenocytes (Kawaguchi-

Miyashita, Shimada et al. 2000) were stimulated using antibodies. This discrepancy could be due to differences between primary cells and clones and lines and the setup of the assays because we used non-irradiated splenocytes from H2^{b/d} BALB/c mice as opposed to irradiated B10.BR splenocytes or plate-bound antibodies. Regardless, while substantially less IL-4 is produced than IFN γ in our system, IL-4 and IFN γ can synergize to lead to the expression of CD69 by over 80% of B cells and also lead them to upregulate B7.2 and MHC class II. These results suggest that through the activation of $\gamma\delta$ T cells, B cells may become better antigen presenting cells. This aspect has not been anticipated before and provides a new way for $\gamma\delta$ T cells to regulate $\alpha\beta$ T cell responses. In addition, while Thy-1^{bright} $\gamma\delta$ T cells have been reported to produce less IL-4 than Thy-1^{dull} $\gamma\delta$ T cells, the reported amount produced by these cells (1 ng/ml after 3 days using 1.5x10⁵ activated cells) (Azuara, Grigoriadou et al. 2001) should be capable of mediating the same effects.

A synergism between IFN γ and IL-4 has been observed in other systems. For instance, these cytokines can increase the cyclic AMP-phosphodiesterase activity of monocytes and do so even at concentrations that are below detectable levels (Li, Chan et al. 1992). The combination of IFN γ and IL-4 has also been found to induce alveolar macrophages to produce superoxide anions (Bhaskaran, Nii et al. 1992) and to activate macrophages so that they produce TNF α and microbicidal nitrogen intermediates (Bogdan, Stenger et al. 1991; Stenger, Solbach et al. 1991). The combination also synergizes to lead to a reduction in the amount of soluble CD14 that is released by monocytes and macrophages (Landmann, Fisscher et al. 1992), perhaps making these cells more responsive to LPS.

Dendritic epidermal $\gamma\delta$ T cells (DETCs) and splenic $\gamma\delta$ T cells may be capable of similar responses because DETCs isolated from wound areas have been found to produce IFN γ (Jameson, Ugarte et al. 2002) and the production of IL-4 has been observed in cultured DETCs (Matsue, Cruz et al. 1993; Huber, Descossy et al. 1995). Thus, these cells may promote wound repair by producing keratinocyte growth factor and by enhancing local immune responses with IFN γ and IL-4 in order to minimize infections. Interestingly, NK T cells produce both IFN γ and IL-4 and do so in large amounts

following activation in response to α -galactosylceramide and this has also been found to induce the activation of B cells (Burdin, Brossay et al. 1999; Carnaud, Lee et al. 1999; Leite-De-Moraes, Hameg et al. 2001) suggesting that the function of cytotoxic cells also includes helping other cells, such as B cells, participate in immune responses.

Our results here also impart a possible mechanism for activated $\gamma\delta$ T cells to provide help to B cells regardless of the specificity of the B cell receptor, but in an antigen-specific (for the $\gamma\delta$ T cells) manner. In this context, clusters of $\gamma\delta$ T cells have been found in B cell follicles within human secondary lymphoid tissues (Brandes, Willimann et al. 2003). Further, it has been observed that $\alpha\beta$ T cell-deficient mice, where approximately 27% of $\gamma\delta$ T cells show signs of activation, contain high levels of autoreactive antibodies of the T cell-dependent IgG and IgE isotypes that may be due to $\gamma\delta$ T cell-produced IL-4 (Wen, Roberts et al. 1994). In addition, the migration and differentiation of self-reactive erythrocyte-specific B cells has also been reported in mice that are transgenic for both the 4C8 anti-erythrocyte antibody and the T10/T22-reactive KN6 $\gamma\delta$ TCR (Watanabe, Ikuta et al. 2000). It is worth noting that human $\gamma\delta$ T cell clones have also been reported to enhance immunoglobulin production by B cells but appear to do so in a contact-dependent manner (van Vlasselaer, Gascan et al. 1992) that is dependent on CD40/CD40L interactions (Horner, Jabara et al. 1995), and activated human yo T cells have also been found to express OX40, ICOS and CD70 (Brandes, Willimann et al. 2003). This suggests that while activated murine $\gamma\delta$ T cells do not appear to express CD40L ((Wen, Roberts et al. 1994) and data not shown) and influence B cell function using soluble factors like IFNy and IL-4, human $\gamma\delta$ T cells require cell-tocell contact. Thus, by using a defined antigen-specific *in vitro* $\gamma\delta$ T cell stimulation system, we have identified mechanisms and complexities that underlie the roles of $\gamma\delta$ T cells during immune responses.

Figure Legends

Figure 4.1: $\gamma\delta$ T cells activated by cells expressing T10/T22^b downregulate their cellsurface $\gamma\delta$ TCR levels, blast, and express activation markers

(A, B, C) G8 RAG2^{KO} BALB/c splenocytes were incubated with either H2^{b/d} BALB/c or H2^{d/d} BALB/c splenocytes for 1 day. The cells were then stained with antibodies to CD69 (H1.2F3) and the $\gamma\delta$ TCR (GL3) and analyzed by FACS. Propidium iodide and an antibody to B220 (RA3-6B2) were used to exclude dead cells and B cells, respectively. (A) The expression of CD69 and $\gamma\delta$ TCR on the remaining cells is shown. (B) Combined $\gamma\delta$ TCR⁺ and CD69^{hi} cells from (A) were then analyzed for cell size (forward scatter) and $\gamma\delta$ TCR levels. In addition, G8 $\gamma\delta$ T cells that were incubated in the presence (black line) or absence (shaded region) of H2^{b/d} BALB/c splenocytes were analyzed for the expression of (C) CD44 (IM7), (D) CD223/Lag-3 (C9B7W) and (E) PD-1 (J43).

Figure 4.2: G8 γδ T cell activation induces CD69 expression on B cells in an IFNγand IL-4-dependent manner

The expression of CD69 was determined with either FITC or PE-labeled antibodies to CD69 (H1.2F3) and representative histograms of CD69 expression on B cells are shown in A – D. (A) $H2^{b'd}$ BALB/c spleen cells were cultured for 24 hours alone (gray shaded region) or cocultured with either RAG2^{KO} BALB/c (black shaded region) or G8 RAG2^{KO} BALB/c (black line) splenocytes. (B) BALB/c splenocytes were incubated for 24 hours with either culture media (gray shaded region), the supernatant of a 24 hour coculture of G8 RAG2^{KO} BALB/c and H2^{b'd} BALB/c splenocytes (thick line) or this supernatant depleted of IFN γ (XMG1.2; Rat IgG1; dashed line), IL-4 (11B11; Rat IgG1; thin line), or both (black shaded region). (C) H2^{b'd} BALB/c splenocytes (gray shaded region) or a mix of G8 RAG2^{KO} BALB/c and H2^{b'd} BALB/c splenocytes (gray shaded region) or a mix of G8 RAG2^{KO} BALB/c and H2^{b'd} BALB/c splenocytes (gray shaded region) or a mix of G8 RAG2^{KO} BALB/c and H2^{b'd} BALB/c splenocytes (gray shaded region) or a mix of G8 RAG2^{KO} BALB/c and H2^{b'd} BALB/c splenocytes was cultured for 24 hours in the absence (thick line) or in the presence of neutralizing antibodies to IFN γ (dashed line), IL-4 (thin line), or both (black shaded region). (D) BALB.B B cells were cultured for 24 hours in media (shaded region) or media containing either 1 µg/ml of rIFN γ (dashed line), 100 ng/ml of rIL-4 (thin line), or both (thick line). (E) The percentage of B cells that are CD69⁺ are shown after BALB.B B cells were cultured for 24 hours in the absence or presence of 10-fold dilutions of rIFN γ (between 1 pg/ml and 1 µg/ml) and rIL-4 (between 100 fg/ml and 100 ng/ml).

Figure 4.3: G8 γδ T cell activation induces B7.2 expression on B cells in an IFNγand IL-4-dependent manner

The expression of B7.2 was determined using clone GL1 and representative histograms of B7.2 expression on B cells are shown in (A) and (B). (A) BALB/c splenocytes were cultured for 24 hours in either culture media alone (shaded region) or supernatant of a 24 hour coculture of G8 RAG2^{KO} BALB/c and H2^{b/d} BALB/c splenocytes (thick line). (B) BALB.B B cells were cultured for 24 hours in media (shaded region) or media containing either 1 μ g/ml of rIFN γ (dashed line), 100 ng/ml of rIL-4 (thin line) or both (thick line). (C) Mean levels (in fluorescence units) of B7.2 on B cells are shown after BALB.B B cells were cultured for 24 hours in the absence or presence of 10-fold dilutions of rIFN γ (between 1 pg/ml and 1 μ g/ml) and rIL-4 (between 100 fg/ml and 100 ng/ml).

Figure 4.4: The activation of G8 $\gamma\delta$ T cells induces T10/T22 expression on B cells and G8 $\gamma\delta$ T cells during the coculture

(A, B) G8 $\gamma\delta$ T cells were cultured in the presence of C57Bl/6 splenocytes and the expression of T10/T22 (7H9-biotin; streptavidin-allophycocyanin) was assayed after 48 hours on $\gamma\delta$ T cells (GL3-PE) and B cells (RA3-6B2-PE). Representative histograms are shown of (A) T10 (7H9) levels on activated G8 $\gamma\delta$ T cells (dark line) in comparison to those on G8 $\gamma\delta$ T cells cultured in the absence of stimulator cells (shaded region) and of (B) T10/T22 levels on B cells cultured in the presence (dark line) or absence (shaded region) of G8 $\gamma\delta$ T cells. (C) BALB.B B cells were cultured for 24 hours in media (shaded region) or media containing either 1 µg/ml of rIFN γ (dashed line), 100 ng/ml of rIL-4 (thin line), or both (thick line).

Figure 4.5: IFN γ and IL-4 are mostly produced by activated G8 $\gamma\delta$ T cells in the cocultures of G8 RAG2^{KO} BALB/c and H2^{b/d} BALB/c splenocytes

(A) RNA was isolated from approximately $2x10^6$ cells after 0, 1, 2, 4, 6, 11, and 25 hours of coculture and analyzed for the expression of IFN γ , IL-2, IL-4, and the major isoforms of CD45 (B220, RBC, RB and RO) using 28 cycles of RT-PCR. (B) Cells that were cocultured for 24 hours were stained with antibodies to CD69 (H1.2F3-FITC), $\gamma\delta$ TCR (GL3-PE), $\alpha\beta$ TCR (H57-597-Allophycocyanin), and B220 (RA3-6B2-Cy7PE). Propidium iodide was used to exclude dead cells. $\gamma\delta$ T cells, $\alpha\beta$ T cells, B cells, as well as *other* cells that, based on their cell-surface phenotypes, were neither B cells nor T cells were sorted. cDNA was prepared from the sorted cells and approximately 100 cell-equivalents thereof per reaction were analyzed for the expression of CD45, Granzyme A, IFN γ , IL-4, and the constant regions of the TCR β and δ chains using 30 cycles of RT-PCR. $\alpha\beta$ T cell, β Cell, $\gamma\delta$ T cell, and *other* samples are ordered left to right. (C) Monensin was added 11 hours after the start of cultures of G8 RAG2^{KO} BALB/c or H2^{b/d} BALB/c splenocytes or cocultures thereof and cells were stained 4 hours afterwards with anti-V γ 2 (UC3-10A6) to detect the G8 $\gamma\delta$ TCR and subsequently fixed, permeabilized, and stained with either anti-IFN γ (XMG1.2) or a rat IgG1 isotype control (R3-34).

Figure 4.1: $\gamma\delta$ T cells activated by cells expressing T10/T22^b downregulate their cellsurface $\gamma\delta$ TCR levels, blast, and express activation markers

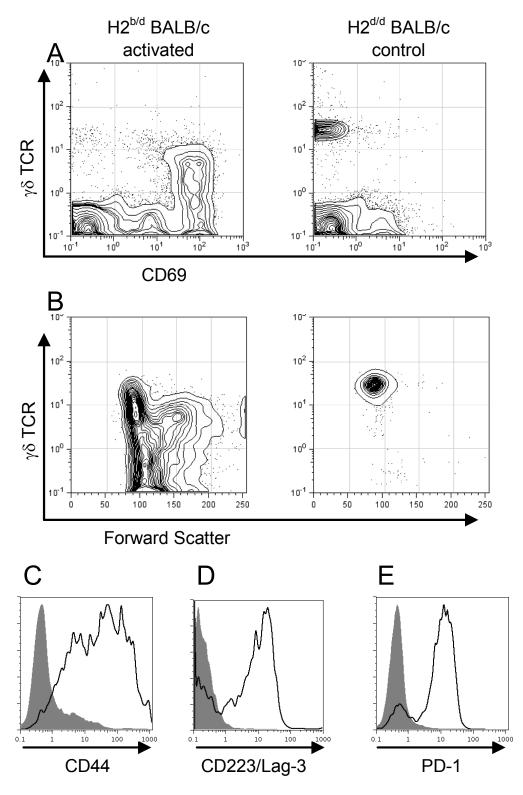
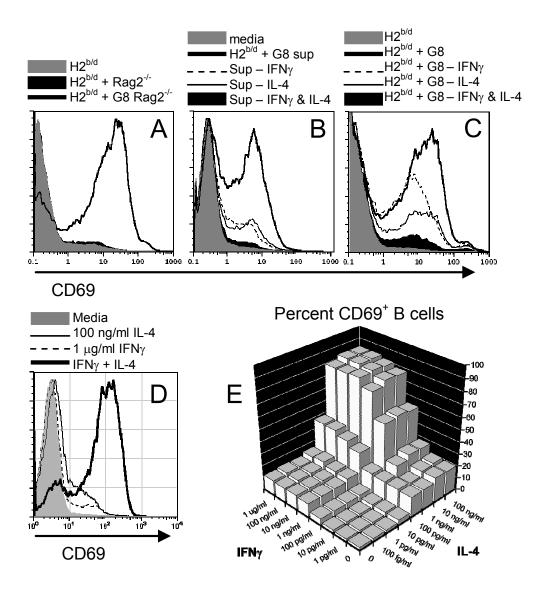
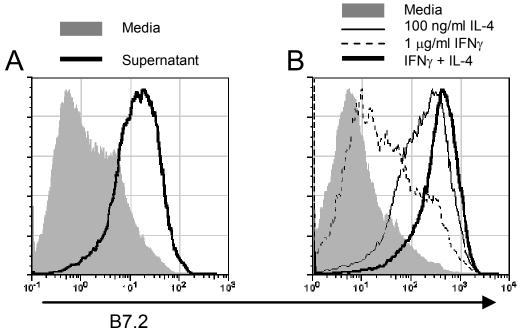
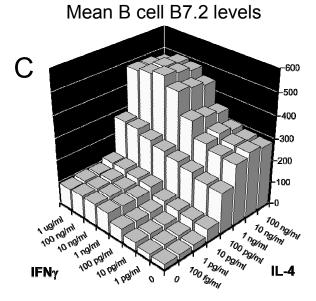
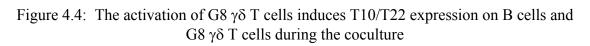
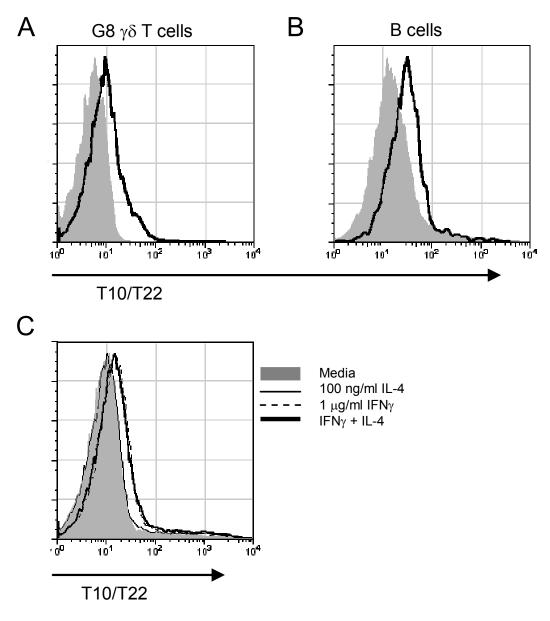
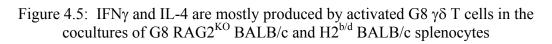
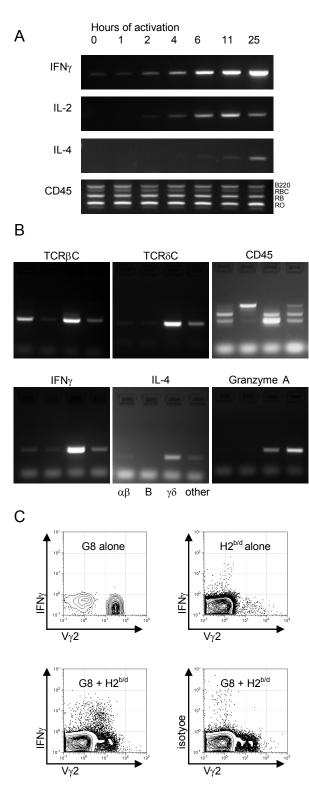


Figure 4.2: G8 $\gamma\delta$ T cell activation induces CD69 expression on B cells in an IFN γ - and IL-4-dependent manner


Figure 4.3: G8 $\gamma\delta$ T cell activation induces B7.2 expression on B cells in an IFN γ - and IL-4-dependent manner




_

Chapter 5: A Simulation of Cell-to-Cell Contact in Order to Study Synapse Formation and T cell Activation

Foreword

"Physical Chemistry 5th Edition" by Gordon M. Barrow served as a general reference for this chapter.

Introduction

The interaction of a T cell with another cell can lead to the formation of a synapse if the T cell encounters agonist TCR ligands in the process. During synapse formation, the TCR actively moves towards the area where the T cell is in contact with the other cell (Wulfing and Davis 1998). In general, the TCR accumulates in the middle of the synapse and this is also accompanied by the accumulation of other molecules. For instance, MHC molecules bearing agonist peptides also accumulate in the middle of the synapse although, interestingly, MHC molecules bearing what would be thought of as irrelevant peptides do so as well. Unlike the TCR and MHC, ICAM-1 and LFA-1 accumulate in the area between the TCR and edge of the synapse. These central and peripheral distributions have been termed cSMACs and pSMACs by some (Monks, Freiberg et al. 1998) where c and p stand for central and peripheral, respectively, and SMACs stand for supramolecular activation clusters. As the term SMAC implies, many molecules accumulate and, over the last few years, ever-increasing numbers of different molecules have been found to accumulate.

In order to study the process of synapse formation further and its relevance to T cell activation, I designed a simulation of cell-to-cell contact. Simulations are very helpful in that, if properly designed, they allow one to design and obtain results from experiments that involve conditions that may be difficult to achieve in a laboratory setting. In addition, the design of simulations of biological processes exposes areas where additional research is needed in order to simulate these processes properly. An example of such a process is the general movement of the TCR to the synapse where it is unclear where each TCR is moving to and why it is moving there. Another example of such a process is the determination of whether or not a TCR is bound to an agonist peptide/MHC complex. It will be interesting and important to find answers to these questions. What follows are some of the results of the simulation that can only get more accurate as questions, like these, get answered.

Materials and Methods

On the use of JAVA

The simulation is written in the programming language JAVA. It currently contains a bit fewer than 10,000 lines of code. While JAVA programs rely on an interpreter and generally do not run as fast as compiled programs written in C++, they have the benefit of being easily portable to different computers and operating systems. The simulations shown in this chapter were either run on one of my computers, the lab's computers or, more likely, one of the many dual-processor UNIX-based computers that are part of Stanford's Leland computing cluster. Most simulations were completed in about a day.

The Simulation, In a Nutshell

The simulation is based on a model of two cells that touch each other at a contact area (*Figure 5.1A*). These two cells are represented by one or more spheres of which each contains a representation of the contact area. The contact area is divided into smaller regions. Molecules are found on the spheres and those inside the same region of the contact area can interact with each other. Molecules diffuse on the spheres and can also move towards a target. Concentrations of molecules are determined by using the area of each region and a confinement distance. On-rates for molecule binding are adjusted based on the membrane separations in the regions.

Cells

Cells are represented by one or more spheres. The reason for being able to represent two cells using more than two spheres is that this is a simulation of molecular interactions and images usually only have three color channels: red, green, and blue. This makes it difficult to tell more than three different types of molecules apart on the same sphere. Thus, in order to visualize the locations of a large number of different molecules and in order to be able to tell them apart, molecules can be assigned to different spheres. For each sphere, it is possible to specify the location of the sphere, the radius of the sphere, the orientation of the contact area, the mean distance from the middle of the contact area for targets of directed molecule movement, the standard deviation of this distance, and whether or not the sphere is larger or smaller than a hemisphere.

Contact Area

It is possible to specify the radius of the contact area, which must be smaller or equal to the radii of all spheres. In order to use experimentally-determined on-rates, the contact area is divided into smaller regions (*Figure 5.1B*). It is possible to specify the maximum number of molecules that can be found inside each region on a cell and the number and height of virtual immobile bound molecules that contribute to the separation of membranes inside each region.

Molecules

For each type of molecule, it is possible to specify a large number of parameters. These include the name, the sphere it is located on, the color used to represent it, the height, the heights of all complexes formed with this type of molecule, the standard deviation for entering regions in an unbound state when the membranes are spaced closer together than the height of the molecule, the standard deviation for entering regions in a complexed state when the membranes are not separated by the height of the complex, the on-rates for forming potential complexes, the standard deviations of on-rate adjustments when the membranes are not separated by the heights of potential complexes, the confinement distance for adjusting on-rates, the off-rates for dissociating complexes, the velocity by which the unbound molecule moves towards a target, the velocities by which complexes move towards a target, the diffusion coefficient when unbound, the diffusion coefficients for complexes, the fraction that is initially intracellular, the fraction that is initially degraded, the rate of resynthesis, the target for exocytosis, the standard deviation of exocytosis, the rate of exocytosis, the rate of endocytosis when unbound and resting, the rate of endocytosis when unbound and activated, the rates of endocytosis when complexed and resting, the rates of endocytosis when complexed and activated, the rate

of degradation when resting and intracellular, the rate of degradation when activated and intracellular, the rate of deactivation when extracellular, the rate of deactivation when intracellular, and the duration of constant binding needed for activation.

Virtual Molecules

As will be discussed shortly, the separation of membranes inside the contact area is important. Virtual molecules act as immobile struts that reinforce a certain membrane separation inside the contact area. The larger the number of virtual molecules, the more likely it will be that the membrane separation inside a particular region of the contact area will be similar to the height of the virtual molecules. Virtual molecules are not used for any other computations.

Confinement Distance

On-rates are typically determined experimentally for volume and not area concentrations. In order to use on-rates determined for volume concentrations, the area concentrations are divided by so-called confinement distances (Bell, Dembo et al. 1984). While the separation of membranes in the contact area between two interacting cells typically ranges between 15 and 40 nm, the confinement distance has sometimes been reported to be as small as 2 nm (or orders of magnitude larger). This may be because, unlike in solution, molecules in membranes are oriented towards each other (or are separated such that they cannot bind). Then, once one receptor binds its ligand, the membrane close to that receptor is spaced optimally so that additional receptor/ligand complexes of the same type can form. This may then lead to larger areas where only certain receptors bind optimally to their ligands. A good general discussion of the confinement distance can be found in a review by M.L. Dustin (Dustin, Bromley et al. 2001).

Membrane Separation

When a molecule of type A on one cell binds to a molecule of type B on another cell, the membranes close to those molecules are spaced so that additional A to B binding

is favored. As more A to B binding takes place, this membrane spacing may be reinforced. On the other hand, other molecules whose complexes are taller or shorter than A/B complexes may not bind as readily because their interacting regions may not be optimally spaced (*Figure 5.1C*). In addition, the spacing of membranes affects whether molecules and complexes can enter regions (e.g., some may be too tall).

The separation of membranes in each region is calculated by taking a starting separation value for the region and multiplying it by the amount of virtual molecules that are causing that separation. The sum of all heights of complexes in that region is added to that value and the result is divided by the sum of virtual molecules and complexes in that region. The resulting separation is then used to modify the chance of a molecule binding to another molecule and the chance for a molecule or complex moving from one region to another.

Penalizing Sub-Optimal Distances

Some of the processes involved in molecule binding and region entry are modeled using normal distributions. While these processes may not necessarily behave according to normal distributions, they do have maximal values at their optima and lower values as the distance to the optima decreases or increases (*Figure 5.1D*). For these processes, it is possible to specify an optimal distance for membrane separation, which is the height of the dimer or monomer, as well as a standard deviation, σ , which is the distance from the optimum that corresponds to one standard deviation unit on the normal curve ($1\sigma =$ 60.7% of the maximal value; $2\sigma = 13.5\%$; $3\sigma = 1.1\%$). The distance from the optimal distance, Δ , is then used in the following equation to obtain a ratio. This ratio, which lies between 0 and 1, is then used to adjust further calculations.

$$ratio = \frac{e^{-\frac{1}{2}\left(\frac{\Delta}{\sigma}\right)^{2}}}{\frac{\sigma\sqrt{2\pi}}{\frac{1}{\sigma\sqrt{2\pi}}}} = e^{-\frac{1}{2}\left(\frac{\Delta}{\sigma}\right)^{2}}$$

Adjusting the Rate of Association

When two molecules attempt to interact and the calculated distance between the membranes in the region containing the molecules is not the same as the length of the extracellular region of the potential complex, the k_{on} value is multiplied by the above ratio. Thus, at the optimal distance, the k_{on} value will be the specified k_{on} value, but at closer and further distances, the k_{on} value will be reduced.

Region Entry

The entry and exit of regions inside the contact area is regulated. For instance, complexes cannot leave the contact area because they are attached to both membranes. If complexes attempt to leave the contact area, they bounce off the edge. As molecules attempt to leave one region and enter another region, the likelihoods for these events are calculated and it is then determined if these events should take place. If a molecule is not allowed to enter a particular region, then it is moved back to its original location and it tries to move again.

When an unbound molecule attempts to enter a region where the membranes are spaced closer together than the height of the molecule, a random number between 0 and 1 is used to determine if this event can take place. The value of Δ is the absolute difference between the height of the molecule and the distance between the membranes in the region. The value of Δ is calculated for both the original and final region and *ratio* values are obtained for both regions. If the molecule is shorter than the distance between the membranes, a *ratio* value of 1 is used. The *ratio* value of the final region is divided by the *ratio* value of the original region to obtain the probability that the molecule can enter the final region. If the random number is smaller than that probability, then the event will take place. If not, then the program will attempt to move the molecule from the original location by a new distance in a new direction according to the same rules. Thus, the movement of tall molecules into narrowly-spaced regions can be prevented.

When a bound molecule attempts to enter a region where the membranes are spaced closer or further than the height of the complex, a random number between 0 and 1 is used to determine if this event can take place. The value of Δ is the difference between the height of the complex and the distance between the membranes in the region. The value of Δ is calculated for both the original and final region and *ratio* values are obtained for both regions. If Δ does not differ in sign, then the *ratio* value of the final region is divided by the *ratio* value of the original region to obtain the probability that the complex can enter the final region. If Δ differs in sign, then the probability is the *ratio* value in the final region. If the random number is smaller than the probability, then the event will take place. Otherwise, the program will attempt to move the bound molecule from the original location by a new distance in a new direction until the event can take place. Thus, bound molecules tend to move into regions where the membrane separation is similar to the height of the complex and where they are also capable of rebinding with a more optimal k_{on} upon dissociation of the complex.

Simulating Receptor Dynamics

Initially, the simulation allocates space for all potential molecules. These molecules are then either randomly seeded onto the surfaces of spheres or treated as being internal or degraded. They are then put through iterations where a specified period of time is simulated. The shorter this period of time is, the more accurate the simulation becomes. Ideally, this time should be chosen such that molecules do not diffuse more than one region away in the contact area and do not all release and bind in each period of time. All rates use first-order rate constants except for k_{on} , which relies on second-order rate constants. In addition, receptor activation occurs after a fixed period of time and molecule synthesis does not rely on a random number to determine whether or not it should take place.

When using a first-order rate constant, k, the formula below is used to determine the probability, p, that an event will take place in a given amount of time, t. A random number between 0 and 1 is then generated and the event takes place if this number is lower than the calculated probability.

 $p = 1 - \boldsymbol{\mathcal{C}}^{-k \times t}$

The simulation starts with the first molecule in a long list of molecules and puts it through the process illustrated in *Figure 5.2* and summarized below. If more than one thread is used (e.g., on multi-processor machines) then the list is divided evenly among threads and the starting molecules are chosen accordingly. Once the last molecule has been reached, a new round starts at the first molecule until a certain amount of total time has been simulated.

Molecules that are in a complex where they are the binding partner (i.e., the other molecule initiated the binding event) or that are currently internal or degraded are skipped.

Molecules that are part of a complex but are not the binding partner attempt to release from the binding partner using the specified k_{off} .

Molecules that are still part of a complex (i.e., they did not release) have their bound time increased. If this bound time or the bound time of their partners exceeds a specified amount, t_{activate}, they and/or their partners become activated.

Molecules attempt to internalize based on the applicable k_{endo} (active/inactive, bound/free). When bound molecules internalize, this dissociates the complex and the other molecule is freed.

External free molecules that are in an activated state attempt to deactivate based on the specified $k_{deactivate(ext)}$.

Molecules then move and/or diffuse and, if bound, their binding partner is moved to the same location in the contact area. If a molecule or complex is moved into a new region of the contact area, a test is performed to determine whether this move can take place. If not, another attempt is made to move and/or diffuse the molecule or complex. Complexes cannot leave the contact area and will bounce off the edge of the contact area.

Molecules that are not bound and are in the contact area then attempt to bind to other molecules inside the same region of the contact area based on the specified k_{on} values.

Internal molecules that are in an activated state attempt to deactivate based on the specified $k_{deactivate(int)}$.

Internal molecules that are in an inactive state attempt to externalize based on the specified $k_{exocytosis}$. During exocytosis, molecules can either randomly appear anywhere

on the surface of a sphere or can be biased to appear a certain distance from the middle of the contact area with a normal distribution.

Internal molecules that are in an inactive state and did not externalize may be degraded based of the specified $k_{degrade(inactive)}$.

Internal molecules that are in an activated state may be degraded based on the specified $k_{degrade(active)}$.

Degraded molecules are resynthesized if the current rate of synthesis (a fixed number per unit of time) dictates that additional molecules still need to be added. If a molecule is currently in a degraded state and molecules still need to be synthesized, then the molecule will be resynthesized.

Simulating Release

The probability, p_{rel} , that a complex will dissociate in a given amount of time is calculated using the standard formula for first-order reactions:

 $p_{rel} = 1 - \boldsymbol{\mathcal{C}}^{-k_{off} \times t}$

A random number between 0 and 1 is generated and, if this random number is smaller than p_{rel} , the complex will dissociate.

Simulating Diffusion

In two-dimensional diffusion, the distance molecules diffuse in each dimension has a normal distribution. The average squared distance moved is the product of 4, the diffusion coefficient, and the time being simulated. Thus, in order to simulate diffusion, two random numbers, x_a and x_b , with Gaussian distributions, means of 0, and standard deviations of 1 are generated.

The distance moved, *x*, can be calculated from the values of x_a and x_b using the following equation:

$$x = \sqrt{x_a^2 + x_b^2}$$

137

The average values of the squared values of x_a and x_b is 1 and thus the average value of the sum of the squared values is given by the following equation:

$$\overline{x^2} = 2$$

These numbers are then used with the following equation in order to obtain the distance, d_{diff} , that a given molecule or complex with a diffusion coefficient of D will diffuse in a random direction in a given amount of time.

$$d_{diff} = \sqrt{\frac{x_a^2 + x_b^2}{2} \times 4 \times D \times t} = \sqrt{(x_a^2 + x_b^2) \times 2 \times D \times t}$$

Simulating Directed Movement

In addition to diffusing, molecules can actively move towards targets. A new target is chosen each time a molecule is diffused and moved. These targets have specified average distances from the middle of the contact area and distribute normally over the surfaces of the spheres towards and away from the middle of the contact area with specified standard deviations. In order to move towards a target, a plane containing the molecule, the middle of the sphere and the target is intersected with a plane that is orthogonal to a vector from the molecule to the middle of the sphere. This yields a line and the molecule moves along the surface of the sphere in the direction of this line by a distance specified by its velocity and the amount of time being simulated. As the molecule could move either forwards or backwards in the direction of this line, its final location is the one where it ends up closer to the target.

This algorithm can yield an interesting result. If the sphere containing the molecule is smaller than a hemisphere, then, even if the targets are primarily inside the contact area, molecules outside the contact area tend to accumulate at the opposite end of the cell from the contact area. This is because, as a molecule moves either forwards or backwards along the line, the closer point to a target inside the contact area may not be

the closer point to the contact area. Antipodal accumulation has been reported in synapse formation (Costello, Gallagher et al. 2002).

Simulating Binding

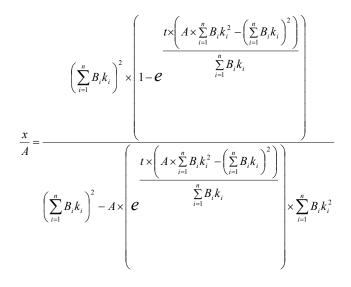
Tracking the locations and interactions of individual molecules presents a computational challenge because each molecule could potentially interact with each other molecule. In order to get around this n-body problem at the expense of some precision, binding is calculated based on the concentrations of molecules in particular regions of the contact area.

When one deals with only two types of molecules, *A* and *B*, that bind each other, the following equation can be used to determine how many molecules, *x*, end up bound after a given amount of time.

$$\frac{(A-x)}{(B-x)} = \frac{A}{B} \times e^{kon \times t \times (A-B)}$$

However, things are not as simple when one molecule, such as a TCR, can potentially bind to one of many different types of molecules, such as MHC molecules bearing different peptides, with different association rates. For this, a new equation is needed.

The rate of binding of a receptor to different types of ligands can be represented as follows where A is the concentration of the receptor, B_1 , B_2 , and B_n are the concentrations of the ligands, and k_1 , k_2 , and k_n are the rate constants for the binding of the receptor to particular ligands.


 $rate = Ak_1B_1 + Ak_2B_2 + ... + Ak_nB_n = A(k_1B_1 + k_2B_2 + ... + k_nB_n)$

For a given final rate, the amount of receptor that binds to a particular ligand is proportional to the product of the rate constant for binding to that ligand and the concentration of that ligand divided by the sum of all products of rate constants and ligand concentrations.

$$rate(Ak_iB_i) = rate \times \frac{k_iB_i}{k_1B_1 + k_2B_2 + \dots + k_nB_n}$$

This leads to the following equation for determining the total amount, x, of initially unbound receptor A that will be bound to a ligand after a given amount of time, t. At that time, the concentration of unbound A will be A - x.

This can be integrated (with the help of Wolfram Research's Mathematica program) to obtain the probability, x/A, that any initially unbound receptor A will bind to a ligand during the time being simulated. The probability that receptor A will be bound to the particular ligand B_i is obtained by multiplying x/A by the rate of binding to B_i divided by the rate of binding to any ligand.

The simulation sequentially calculates release, diffusion and binding for each molecule and receptor/ligand complex. If a molecule ends up forming a receptor/ligand complex by binding to another molecule, then the other molecule is no longer treated separately and both molecules are treated as a complex for the duration of the interaction. Due to the sequential nature of the simulation, if a molecule does not end up binding

another molecule, this other molecule still has the chance to bind to the initial molecule once it is its turn to undergo diffusion and binding. Thus, the above probability, x/A, is too large when simulating binding sequentially for all molecules. The correct probability, p_{bind} , is obtained as follows:

$$p_{bind} = 1 - \sqrt{1 - \frac{x}{A}}$$

Results and Discussion

Testing the Binding and Release Algorithms

Each molecule is simulated sequentially. Thus, the first molecule is simulated under conditions where no molecules have yet bound or released from their ligands while the last molecule is simulated under conditions where this has taken place for all molecules. In addition, an algorithm was designed to calculate the likelihood that a molecule will bind to one of many potential ligands.

In order to validate this approach, the binding of immobile molecules on one cell to mobile molecules on another cell was simulated where, at equilibrium, 10, 50, or 90% of immobile molecules inside the contact area should have been bound. After 360 seconds the on-rates were set to zero so that the molecules could no longer associate with one another. The results are shown in *Figure 5.3* where the 10, 50, and 90% targets were obtained.

Binding Takes Place in Two Phases

Molecules diffuse over the surfaces of cells with different diffusion coefficients. These tend to reach maximal values around $1 \times 10^{-13} \text{ m}^2 \text{s}^{-1}$ and are often quite smaller. Due to the viscosities of cell membranes that are about two orders of magnitude greater than that of water, the diffusion of cell-surface receptors is much slower than that of molecules in solution.

In order to study the equilibrium binding of two molecules, different numbers of immobile molecules were first seeded onto one cell. Appropriate numbers of mobile ligands were then seeded onto the other cell and confinement distances were chosen such that 90% of immobile molecules should have ended up being bound at equilibrium.

The results in *Figure 5.4* show that equilibrium levels of binding were more quickly approached when the amount of mobile molecules was in excess to the amount of immobile molecules. However, the actual time required to reach equilibrium should have been similar in all cases. In addition, binding occurred in two phases. First, the molecules inside the contact area had a chance to associate. This occurred in the first 10 seconds where there was an initial rapid phase of binding until 30% of immobile

molecules were bound. Additional molecules were then bound in the second phase as more mobile molecules diffused into the contact area.

The Diffusion Coefficient is Important in the Second Phase

In order to explore further the importance of diffusion in equilibrium binding, the mobility of molecules was reduced 10- and 100-fold. The results in *Figure 5.5* show that approximately 30% of immobile molecules were bound in the first phase due to the mobile molecules that were initially present in the contact area. Thereafter, additional immobile molecules were bound as equilibrium was slowly attained. The rate at which equilibrium was attained was dependent on the diffusion coefficients of the mobile molecules.

Accurate Diffusion Coefficients are Rare but Important

As was shown in *Figures 5.4* and *5.5*, there are two phases of binding. First, the molecules inside the contact area bind and then equilibrium is slowly reached as additional molecules diffuse, or are moved, into the contact area. Thus, the rate of diffusion likely affects synapse formation and, if relative numbers of molecules inside the synapse are important, then the rate of diffusion is very important. Unfortunately, very little experimental data exists on diffusion coefficients and, even when values are available, they may sometimes be of limited use.

First, the viscosities of cell membranes are cell type-dependent, may be dependent on the activation states of cells, and may be affected by some drugs. For instance, polymorphonuclear leukocytes have membrane viscosities that are about twice as great as those of red blood cells (Feinstein, Fernandez et al. 1975) and the drug cyclosporine has been found to increase the viscosity of lymphocyte membranes (Niebylski and Petty 1991). Thus, diffusion coefficients of cell-surface molecules need to be determined for the cells of interest.

Second, the viscosities of cell membranes are highly temperature-dependent and must be measured at 37°C, which may not be possible without the appropriate microscope add-ons. For instance, viscosities for erythrocyte membranes (of various

species) have been reported to be 76 cP at 37°C (Zachariasse, Vaz et al. 1982), 130 cP at 30°C (Koyama, Araiso et al. 1987), 180 cP at 25°C (Feinstein, Fernandez et al. 1975), 210 cP at 20°C (Koyama, Araiso et al. 1987), 330 cP at 10°C (Koyama, Araiso et al. 1987) and 570 cP at 5°C (Zachariasse, Vaz et al. 1982), suggesting that diffusion coefficients measured at 37°C could be 7.5-fold or greater than those measured at 5°C. Interestingly, physiological processes slow down about 2-fold for every 10°C reduction in temperature. A 32°C reduction in temperature from 37°C to 5°C would be expected to slow down reactions by 5-fold, which is close to the 7.5-fold increase in viscosity.

It should be kept in mind that the diffusion coefficient, *D*, is dependent on the temperature, *T*, and the viscosity, η , and can be calculated using the following formula:

$$D = \frac{RT}{6\pi r N\eta} = \frac{kT}{6\pi r \eta}$$

While the temperature-dependence of the diffusion coefficient is on a Kelvin scale and would not be expected to change much between 37°C and 5°C, this is not the case for viscosity on which the diffusion coefficient is also dependent. Thus, diffusion coefficients need to be measured at 37°C.

Third, the use of antibodies, gold beads, or anything that changes the size of the receptor being studied may lead to inaccurate diffusion coefficients. Membrane-bound proteins frequently have extracellular, transmembrane and intracellular domains. The diffusion coefficient of the whole molecule can be determined from the diffusion coefficients of the extracellular (D_E), transmembrane (D_T), and intracellular (D_I) domains (derived from the complexed receptor formula in (Coombs, Kalergis et al. 2002)).

$$D = \frac{D_E D_T D_I}{D_E D_T + D_E D_I + D_T D_I}$$
$$D = \left(\frac{kT}{6\pi}\right) \times \left(\frac{1}{r_E \eta_E + r_T \eta_T + r_I \eta_I}\right)$$

Because the membrane viscosity is ~100-fold greater than the viscosities of water (1 cP) and cytoplasm (2 cP) (Periasamy, Armijo et al. 1991) and because the transmembrane domain is not 100-fold smaller than the extracellular domain, D should be primarily dependent on the radius of the molecule's transmembrane domain, r_T , and the viscosity of the membrane, η_T .

However, it has been found that the diffusion coefficient of the GPI-anchored protein Thy-1 is highly dependent on its extracellular domain, which is only a single immunoglobulin V-type domain with a mass of about 18 kDa (Zhang, Schmidt et al. 1992). Assuming that immunoglobulin domains have radii of about 2 nm, this would suggest a diffusion coefficient of $1.14 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$ in the absence of a transmembrane domain. The reported value is $3.2 \times 10^{-13} \text{ m}^2 \text{s}^{-1}$, which initially suggests that the GPI anchor inside a membrane could have a radius as large as 2 - 3 nm (although, due to the Stokes Paradox, it is not possible to rely on the initial formula for the diffusion coefficient to calculate the radius of the transmembrane domain). When, Thy-1 was detected using Fab, F(ab)₂, or whole IgG, its diffusion coefficient was reported to decrease to 2.0, 1.6, and $1.0 \times 10^{-13} \text{ m}^2 \text{s}^{-1}$, respectively. This suggests either that the antibody used to detect Thy-1 (MRC-OX7) was binding to Thy-1 such that it ended up inside the membrane or that there was a dense region just outside the cell membrane that had a similar viscosity to the cell membrane. Thus, antibodies and gold particles (and preferably not 100 nm gold beads, as were used to determine the diffusion coefficient for LFA-1 (Kucik, Dustin et al. 1996)), should not be used to determine diffusion coefficients because their size may affect the determined values.

Simulating the Benefits of LFA-1 Activation

Shortly after T cell activation, the affinity of LFA-1 for its ligand, ICAM-1, increases. This, in part, allows T cells to arrest on high endothelial venules (Bargatze,

Jutila et al. 1995) and leads to the formation of an LFA-1/ICAM-1 ring during synapse formation. The increase in affinity appears to be due to a conformational change in LFA-1 (Ma, Shimaoka et al. 2002) but it has also been reported that the diffusion coefficient of LFA-1 is increased after activation (Kucik, Dustin et al. 1996).

The simulation was thus used to determine the effects of increased affinity and increased mobility on the accumulation inside the synapse under optimal (2 nm confinement distance) and suboptimal (20 and 200 nm confinement distance) conditions. The interaction between resting LFA-1 and ICAM-1 has a reported k_{off} of 0.033 s⁻¹ and k_{on} of 367 M⁻¹s⁻¹ where the association equilibrium constant increases from 1.1×10^4 M⁻¹ to 1.0×10^6 M⁻¹ following activation (Lollo, Chan et al. 1993). A similar association equilibrium constant, 2.0×10^6 M⁻¹, for activated LFA-1 has been reported with k_{off} and k_{on} values of 0.1 s⁻¹ and 2.0×10^5 M⁻¹s⁻¹. Thus, activated LFA-1 appears to bind much faster than resting LFA-1 but also releases faster. As far as the mobility of LFA-1 is concerned, it has been reported to increase from a very slow 2.3×10^{-15} m²s⁻¹ to 2.9×10^{-14} m²s⁻¹ (Kucik, Dustin et al. 1996) that is similar to the mobility of other proteins with transmembrane domains. However, these values were determined using 100 nm gold particles, which could severely underestimate the mobility.

As shown in *Figure 5.6A* – *C*, activated fast-moving LFA-1 accumulated inside the synapse. In addition, resting fast-moving LFA-1 accumulated better than resting slow-moving LFA-1 but showed essentially no accumulation when a 200 nm confinement distance was used. Thus, in the absence of activation and properly-spaced membranes, there should not be appreciable LFA-1/ICAM-1 accumulation.

As shown in *Figure 5.6D* – *F*, activated fast-moving LFA-1 bound more ICAM-1 under optimal conditions than resting slow-moving LFA-1 whereas resting fast-moving LFA-1 only bound slightly more. When a 20 nm confinement distance was used, activated LFA-1 led to an order of magnitude more binding than resting LFA-1. When a 200 nm confinement distance was used, activated LFA-1 led to two orders of magnitude more binding than resting LFA-1.

Thus, the increase in affinity of LFA-1 for ICAM-1 after activation is primarily responsible for the accumulation of LFA-1 and ICAM-1 in the synapse. However, the increased mobility of LFA-1 after activation allows it to accumulate faster.

Everything that Binds and Diffuses Should Accumulate

An ever-increasing number of molecules are being found that accumulate inside the synapse. In fact, almost every molecule on one cell that has a ligand on the other cell seems to accumulate somewhere in the synapse. In some cases, such as with the TCR and CD2, this may be due to active movement towards the synapse. In other cases, this may be due to diffusion alone.

Figure 5.7 shows that any mobile molecule on one cell with a ligand on the other cell should be able to accumulate inside the synapse. Three different binding scenarios were analyzed.

In the first (*Figure 5.7A*), a molecule on one cell was immobile while the ligand on the other cell was mobile. This can be the case, for instance, when the immobile molecule is an adhesion molecule that is anchored to the cytoskeleton. In this case, there was initially a slight accumulation of the mobile ligand at the edge of the synapse that then spread more evenly over the entire synapse. Overall, accumulation of the ligand was limited by the fact that additional immobile molecules could not enter the synapse.

In the second (*Figure 5.7B*), both the molecule and its ligand were mobile and their complexes diffused with a 2-fold slower diffusion coefficient because these complexes were larger than the monomers and were bound in both membranes. This is the case for most complexes that are free to diffuse in both membranes and initially led to a preferential accumulation at the edge of the synapse that then evened out over the entire synapse. The overall accumulation was much greater than when one molecule was immobile (*Figure 5.7A*).

In the third (*Figure 5.7C*), both the molecule and its ligand were mobile and their complexes diffused with a 60-fold slower diffusion coefficient. This is the case for complexes that become anchored to the cytoskeleton after binding and led to a preferential and strong accumulation at the edge of the synapse.

Overall, both *Figures 5.7B* and *5.7C* could explain the LFA-1/ICAM-1 ring. As the TCR actively moves towards the middle of the synapse, its presence there may simply prevent the accumulation of LFA-1/ICAM-1 because TCR/MHC and LFA-1/ICAM-1 complexes lead to different membrane separations (15 nm in the case of TCR/MHC and

40 nm in the case of LFA-1/ICAM-1). LFA-1/ICAM-1 could also form a ring if their complexes become immobile after binding. Because LFA-1 is capable of signaling (Kim, Carman et al. 2003) this is possible but there does not appear to be any experimental data showing that bound LFA-1 becomes immobile.

Interestingly, *Figures 5.7B* and *5.7C* also show a slightly darker area around the synapse. In *Figure 5.7D*, all simulations were rerun with a curved, as opposed to flat, contact area. The amounts of molecules found at a given angle from the middle of the contact area were then analyzed and compared to the expected amounts. It became apparent that while diffusion-based synapse formation led to an accumulation of molecules inside the synapse, it also led to an area bordering the synapse where molecules were scarce. This border can be termed the event horizon of the synapse behind which interesting things happen.

A Study of Synapse Formation during T cell Activation

In order to study T cell synapse formation, simulations involving TCR, MHC, LFA-1, ICAM-1, CD2, and CD48 were set up. Different simulations involved differing amounts of agonist peptide/MHC complexes in the presence of irrelevant peptide/MHC complexes. In addition, some simulations were performed in the absence of CD2 or in the absence of active movement of the TCR and CD2 towards the synapse.

To simulate 24 hour T cell interactions with ligand-expressing cells, the radius of both cells was set to 5 μ m because most lymphocytes have a diameter of about 10 μ m. The radius of the contact area was set to 4 μ m because the synapse is usually just smaller than the width of the cell. 50,000 TCRs and 50,000 MHC molecules were simulated where 50, 500, 5,000, or 25,000 of the MHC molecules were occupied by agonist peptides that were recognized according to reported data for 2B4 TCR interactions with MCC/IE^k (k_{off} = 0.063 s⁻¹ and k_{on} = 1.57x10³ M⁻¹s⁻¹). MHC molecules with irrelevant peptides were recognized with very fast dissociation rates (2.0 s⁻¹) and standard association rates (1.0x10³ M⁻¹s⁻¹) (guesstimates from Lawren Wu in Mark M. Davis' lab) because TCR/MHC association is mostly peptide-independent (Wu, Tuot et al. 2002). It has been argued that TCR binding does not lead to enhanced TCR endocytosis (Liu, Rhodes et al. 2000) but increases in TCR endocytosis have been observed by others.

Based on reported data (Menne, Moller Sorensen et al. 2002), the simulation was configured so that 87% of the 50,000 TCRs were initially extracellular, intracellular TCRs exocytosed at a rate of 0.00167 s⁻¹, and resting TCR endocytosis rates of 0.00025 s⁻¹ increased to 0.00197 s⁻¹ after TCR ligation. T cell activation leads to the active movement of the TCR and CD2 towards the synapse and this velocity was set to a reported value of 0.05 μ m·s⁻¹ (Moss, Irvine et al. 2002).

Additional values used for the simulation could not be found in the literature and, thus, estimates were used. The confinement distances for all interactions were set to 2 nm and the standard deviation to penalize sub-optimal membrane separations was set to half the height of the complexes (e.g., 7.5 nm for the 15 nm TCR/MHC complex). The standard deviation to penalize sub-optimal membrane separations for complexes when entering new regions was set to one quarter the height of the complexes (e.g. 10 nm for 40 nm LFA-1/ICAM-1 complexes). The standard deviation to penalize unbound molecules entering regions where they are taller than the membrane separation was set to one quarter the height of the molecules (e.g., 1.75 nm for 7 nm CD2). The TCR is a large complex and, thus, would not be expected to diffuse quickly. Thus, the diffusion coefficient of unbound TCR was set to a very slow 5.0x10¹⁵ m²s⁻¹. Diffusion coefficients for ICAM-1, CD2, and CD48 were each set to 2.0x10¹⁴ m²s⁻¹, which is typical of most transmembrane receptors. Internal activated TCRs were degraded with rate constants of 0.1 s^{-1} while resting TCRs were not degraded. The dissociation rate of TCR/MHC complexes is known to be important in TCR activation (Matsui, Boniface et al. 1994) but TCR activation cannot be represented through a first-order reaction so TCRs were set to activate if bound continuously for 20 or more seconds. With a dissociation rate of 0.063 s^{-1} , the average bound time for 2B4/MCC/IE^k is about 16 seconds so a bit less than half of these interactions should lead to full TCR activation. Fully activated external and internal TCRs were set to deactivate with a rate constant of 0.01155 s⁻¹, which gives the activated receptor a half-life of one minute.

CD2 is an interesting molecule because CD2/CD48 complexes span a distance similar to that of TCR/MHC complexes. CD2 has a reasonably high affinity for CD48 where the k_{on} has been reported to be a fast 1.0×10^5 M⁻¹s⁻¹ but the k_{off} is also a very fast 6.0 s⁻¹, which is similar to what has been reported for TCR interactions with antagonist

peptide/MHC complexes. Because the confinement distance affects the formation of complexes, the role of CD2/CD48 complexes with their fast association rates may be to space the membranes in the middle of the synapse optimally so that TCR/MHC interactions with up to 100-fold slower association rates can then occur optimally. When CD2/CD48 interactions do not space the same distance as TCR/MHC, it has been found that T cell activation is severely compromised (Wild, Cambiaggi et al. 1999).

In order to simulate 24 hour interactions in simulations that each ran for about a day, the simulations were run using 10 second iterations, which had one caveat. The association and dissociation rates for CD2 were so fast that most CD2 molecules in the contact area released from and bound back to CD48 in each round. Thus, essentially all CD2 molecules in the contact area were bound to CD48 at any given time and enhanced the ability of TCRs to bind to peptide/MHC complexes.

As shown in *Figure 5.8A*, increased amounts of agonist peptide/MHC complexes led to increased amounts of internalization. The amount of extracellular signaling of fully-activated TCRs was also analyzed. When TCR/APC interactions lasted for 24 hours and 500 agonist peptide/MHC complexes were present, this led to constant signaling for the full 24 hours. On the other hand, 5,000 and 25,000 agonist peptide/MHC complexes led to stronger initial signals that then tapered off to the levels seen with 50 agonist peptide/MHC complexes. It has been proposed that continued signaling is important in determining the fate of T cells (Iezzi, Karjalainen et al. 1998) so these results show that agonist peptide levels may be important in determining the duration and strength of TCR signals.

It has been suggested that the synapse can form in the absence of directed movement towards the TCR where this was achieved, in part, by making the membrane separation in the synapse take on the shape of a parabola where separation in the middle of the parabola was favorable for TCR/MHC accumulation (Qi, Groves et al. 2001). However, active movement of the TCR and CD2 towards the synapse that is mediated, in part, by CD2-associated protein (CD2AP) (Dustin, Olszowy et al. 1998) may be important for synapse formation and activation because CD2AP-deficient mice cannot form organized synapses and show greatly reduced levels of TCR downregulation (Lee, Dinner et al. 2003). In order to study the importance of TCR and CD2 clustering in synapse formation and T cell activation, the simulation was run is the absence of directed movement towards the synapse. As shown in *Figure 5.8B*, this led to greatly-reduced TCR internalization and about an order of magnitude less signaling TCRs than when active movement towards the synapse took place. A reason for this was that, in the simulation, LFA-1/ICAM-1 led to membrane separations of 40 nm that were not optimal for TCR/MHC interactions. Because the TCR is a large complex and likely diffuses slowly, LFA-1/ICAM-1 complexes could accumulate more rapidly and reinforce the 40 nm separation. On the other hand, when the TCR and CD2 actively moved into the synapse, their concentrations in the middle drove their association with MHC and CD48, respectively, and reinforced a 15 nm membrane separation that drove out LFA-1/ICAM-1 complexes to the periphery of the synapse.

To analyze the importance of CD2 in T cell activation, the simulation was run in the absence of CD2. As shown in *Figure 5.8C*, the absence of CD2 led to reduced levels of endocytosis and slightly reduced levels of TCR signaling. Most IELs do not express CD2 and this result is consistent with what was seen when the amount of TCR downregulation of IELs was compared to that of splenic T cells in cocultures with agonist ligand-expressing splenocytes; although, that difference may have also been due to differences in TCR signaling.

Simulating γδ T cell Activation

The comparison of splenic G8 $\gamma\delta$ T cells to $\alpha\beta$ T cells had suggested that there are very few major differences between these cells. Thus, signaling may also occur similarly.

To study $\gamma\delta$ T cell activation, the same system was used except that the MHCs were replaced by 50, 100, 500, 1,000, 5,000, or 25,000 T10/T22 molecules and the G8 $\gamma\delta$ TCR replaced the 2B4 $\alpha\beta$ TCR. CD2 and CD48 were left out of the simulation.

As shown in *Figure 5.9*, the presence of both 5,000 and 25,000 T10/T22 molecules led to a profound downregulation of surface $\gamma\delta$ TCR levels within 3 hours. In addition, the amount of signaling cell-surface $\gamma\delta$ TCRs was greatly reduced after that

time. If prolonged TCR signaling is essential for some outcomes of T cell activation, then this may not be achievable if T10/T22 levels are high. In 12 hour cocultures between G8 RAG2^{KO} BALB/c $\gamma\delta$ T cells and H2^{b/d} BALB/c splenocytes (see Chapters 2, 3, and 4), $\gamma\delta$ TCR transcripts were found in cells that did not express the $\gamma\delta$ TCR. It is thus possible that these $\gamma\delta$ TCR-negative $\gamma\delta$ T cells encountered cells that expressed high levels of T10/T22.

When 500 T10/T22 molecules were present, the simulation predicted that cellsurface $\gamma\delta$ TCR levels should become undetectable after 24 hours of activation. On the other hand, when twice or half as many T10/T22 molecules were present, $\gamma\delta$ TCR levels could become undetectable in only 9 hours or did not decrease by much, respectively. This was similar to what was seen when G8 $\gamma\delta$ T cells were cocultured with T10/T22^bexpressing splenocytes. As shown in Chapter 3, B cells are abundant T10/T22expressing cells in the spleen and their T10/T22-levels have a normal distribution that spans about one order of magnitude. However, there are also outliers whose levels are an order of magnitude higher. Thus, the experimentally-observed amounts of G8 $\gamma\delta$ TCR downregulation could be due to the distribution of T10/T22 on the B cells they are interacting with and, if the levels are really low as is the case with T10 in BALB.K, little to no downregulation may result.

Regardless of Peptide, the MHC Will Accumulate

It has been observed by Michelle Krogsgaard and others in Mark M. Davis' lab that synapse formation does not only lead to the accumulation of agonist peptide/MHC complexes in the synapse but also of MHCs presenting what may be irrelevant peptides. In order to analyze whether there is something special to the peptide accumulation, 10 minutes of synapse formation were simulated in 100 ms intervals using 50,000 TCRs, 5,000 MCC/IE^k complexes, and 50,000 irrelevant peptide/IE^k complexes.

As shown in *Figure 5.10A*, the synapse took shape over 10 minutes and required directed TCR movement. The red ICAM-1/LFA-1 ring was visible as was a central cluster of TCR, MHC, CD2, and CD48. In the absence of directed TCR movement, ICAM-1 and LFA-1 were spread out over the surface of the synapse.

The green and blue channels for the 10 minute timepoint were analyzed separately in *Figure 5.10B* in order to reveal the presence of the formerly blue 50,000 irrelevant peptide/ IE^k complexes. These, along with CD48, were found to accumulate inside the central cluster as well.

Thus, MHC molecules bearing irrelevant peptides are expected to accumulate inside the synapse because the directed movement of TCRs towards the synapse leads to a high concentration of TCRs inside the synapse that drives their association with MHC molecules.

Future Directions

As was mentioned in the previous simulations, many important parameters still required estimations. For instance, many diffusion coefficients of important cell-surface molecules still need to be determined and these may end up being cell-type specific. In addition, in the previous simulations of T cell activation, a 20 second ligation time was used to initiate a signal from the TCR. As has been pointed out to me by the people in Mark M. Davis' lab who image T cell activation, T cell activation may occur much faster. However, the dissociation rate is clearly important in T cell activation and the T cell must be able to discriminate between many MHC complexes that bind for a fraction of a second and a few that bind for a few seconds. Thus, it will be important to uncover how TCRs determine that they are bound to agonist peptide/MHC complexes. This simulation currently penalizes the association of two complexes if the membranes are not spaced properly. It may be that the rate of dissociation needs to be increased if the membranes are spaced too far apart. In such a scenario, it would be possible to reduce the 20 second ligation time to something much shorter.

Figure Legends

Figure 5.1: An illustration of some concepts in the simulation

(A) The simulation is based around a model where two cells are in contact with each other at a contact area (gray shaded) where their molecules can interact with each other. (B) This contact area is subdivided into smaller regions (using various algorithms) that are shown as alternating black and white areas. Molecule concentrations are determined on a per-region basis and only molecules inside the same region can interact with each other. (C) Membrane separation inside of regions influences whether or not opposing molecules can bind to each other. If the membranes are properly spaced (*left*), the interacting areas (*circles*) of the opposing molecules (*stalks*) are all close together. If the membranes are too close to each other (middle), then the molecules can only bind if they are at an angle to each other. If the membranes are too far from each other (*right*), then the molecules can only bind if there are deformations in the membranes that bring some molecules closer together. (D) The association rate (kon) is reduced if membranes are not properly spaced for binding (left). If the membranes are too close (middle) or too far apart (*right*), then the distance from the optimal separation, Δ , is calculated. The value of k_{on} is subsequently multiplied by a Δ -dependent factor that has a normal distribution.

Figure 5.2: Simulating receptor dynamics

During the simulation, molecules are synthesized and exported to the cell surface. There they diffuse and can interact with other molecules. After a certain amount of constant binding, molecules can activate and then also deactivate. Molecules can be endocytosed from the cell surface at rates that are dependent on whether they are bound and whether they are activated. Finally, intracellular molecules can be degraded.

Figure 5.3: The binding and release equations lead to proper equilibrium binding

The binding of two molecules was simulated using spheres where the contact area was $1/6^{\text{th}}$ of the surface area (cell radius = 5 µm; contact area radius = 4 µm; k_{on} = $1.57 \times 10^3 \text{ M}^{-1}\text{s}^{-1}$; k_{off} = 0.063 s^{-1} ; D = $1 \times 10^{-13} \text{ m}^2\text{s}^{-1}$). 10,000 immobile molecules were

seeded over the surface of one cell. 10,167, 10,833, or 11,500 mobile molecules were then seeded over the surface of the other cell and confinement distances of 12.3, 1.37, and 0.15 nm were used such that, at equilibrium, 10, 50, or 90% of immobile molecules inside the contact area should be bound, respectively. After 360 seconds the association rate constants were set to zero so that the molecules could no longer associate with one another. Each condition was simulated 5 times.

Figure 5.4: Receptor binding takes place in two phases

The binding of two molecules was simulated using spheres where the contact area was $1/6^{\text{th}}$ of the surface area (cell radius = 5 µm; contact area radius = 4 µm; k_{on} = $1.57 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$; k_{off} = 0.063 s^{-1} ; D = $1 \times 10^{-13} \text{ m}^2 \text{s}^{-1}$). Confinement distances were chosen such that 90% of immobile molecules should end up being bound at equilibrium. Binding was allowed for 360 seconds. 10,000 (*blue*), 30,000 (*green*), or 60,000 (*red*) immobile molecules served as the ligands for 11,500, 14,500, and 19,000 mobile molecules, respectively. Each condition was simulated five times.

Figure 5.5: Diffusion affects the second phase of binding

The binding of two molecules was simulated using spheres where the contact area was $1/6^{\text{th}}$ of the surface area (cell radius = 5 µm; contact area radius = 4 µm; k_{on} = $1.57 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$; k_{off} = 0.063 s^{-1}). A confinement distance was chosen such that 90% of immobile molecules should end up being bound at equilibrium. Binding was allowed for 360 seconds. 60,000 immobile molecules served as the ligands for 19,000 mobile molecules that had diffusion coefficients of 1×10^{-13} (*red*), 1×10^{-14} (*green*), or $1 \times 10^{-15} \text{ m}^2 \text{s}^{-1}$ (*blue*). Each condition was simulated five times.

Figure 5.6: The importance of affinity and mobility in LFA-1 activation

LFA-1 activation has been reported to lead to a higher affinity ($k_{on} = 2.0 \times 10^5 \text{ M}^{-1} \text{ s}^{-1} \text{ vs. } 367 \text{ M}^{-1} \text{ s}^{-1} \text{ and } k_{off} = 0.1 \text{ s}^{-1} \text{ vs. } 0.033 \text{ s}^{-1}$) for ICAM-1 and increased mobility (D = $2.9 \times 10^{-14} \text{ m}^2 \text{ s}^{-1} \text{ vs. } 2.3 \times 10^{-15} \text{ m}^2 \text{ s}^{-1}$). To analyze the importance of changes in affinity and mobility under optimal and suboptimal binding conditions, the confinement distance was either set to (A, D) 2 nm (optimal), (B, E) 20 nm, or (C, F) 200 nm (suboptimal). (A, B,

C) 600 seconds of binding were simulated and LFA-1 accumulation inside the synapse was analyzed under conditions where LFA-1 bound and diffused as if it was activated (*solid lines*), bound and diffused as if it was resting (*short dashes*), or bound as if it was resting but diffused as if it was activated (*long dashes*). (D, E, F) In addition, the amount of bound fast-moving activated LFA-1 (*solid lines*) and bound fast-moving resting LFA-1 (*long dashes*) was compared to the amount of bound slow-moving resting LFA-1.

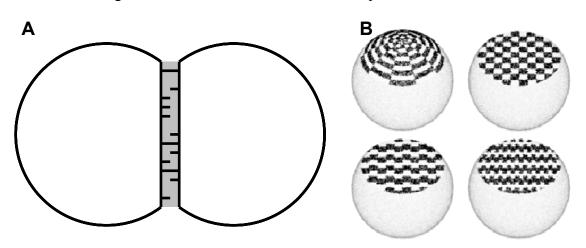
Figure 5.7. Whichever way mobile molecules bind, they always form a synapse

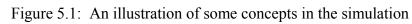
150,000 red molecules were randomly seeded onto one cell and 150,000 green molecules were seeded onto another cell. Both cells are represented using the same 5 μ m radius sphere with a flat 4 μ m radius contact area. Mobile free molecules had diffusion coefficients of $3.0 \times 10^{-14} \text{ m}^2 \text{s}^{-1}$ while bound complexes were either (A) immobile or had diffusion coefficients of (B) $1.5 \times 10^{-14} \text{ m}^2 \text{s}^{-1}$ or (C) $0.5 \times 10^{-15} \text{ m}^2 \text{s}^{-1}$. At 0, 10, 60, 300, and 600 seconds, the amount of red molecules inside the contact area at a given distance from the middle of the contact area was analyzed (*right*). The affinities of the molecules for each other were based on the activated LFA-1 interaction with ICAM-1 ($k_{on} = 2.0 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$; $k_{off} = 0.1 \text{ s}^{-1}$). The confinement distance inside the contact area (0 degrees away) to the other end of the cell (180 degrees away) was analyzed after 600 seconds of binding using a model with a curved contact area.

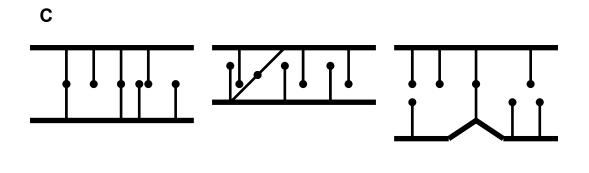
Figure 5.8: Ligand numbers, directed movement, and CD2 are all important for T cell activation

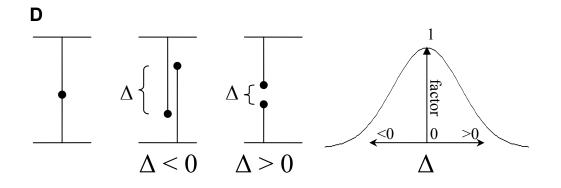
(A) 24 hour interactions were simulated in 10 second intervals between 5 μ m radius cells that used a 4 μ m radius contact area. Initially, 50,000 evenly-distributed TCRs were simulated that bound to 50, 500, 5,000, or 25,000 peptide/MHC complexes with maximal on-rates of $1.57 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$ and off-rates of 0.063 s⁻¹ and to additional (so that there are a total of 50,000 peptide/MHC complexes) irrelevant peptide/MHC complexes with maximal on-rates of $1.0 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$ and off-rates of 2.0 s⁻¹. TCRs moved to the contact area at 0.05 μ m·s⁻¹ and TCR/MHC complexes also actively moved at that rate. TCRs diffused with a very slow diffusion coefficient of $5.0 \times 10^{-15} \text{ m}^2 \text{s}^{-1}$ and were set

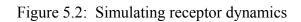
to activate if bound continuously for 20 seconds. 0.0167 TCRs were synthesized per second. 13% of TCRs started out as being internal. The rate constant used for TCR externalization was 0.00167 s⁻¹. The rate constants used for resting and activated TCR internalization were 0.00025 and 0.00197 s⁻¹, respectively. The rate constant used for TCR deactivation was 0.01155 s⁻¹. In addition, there were 50,000 LFA-1, 50,000 ICAM-1, 14,000 CD2, and 50,000 CD48 molecules. CD2 and CD2/CD48 complexes moved to the synapse at a rate of 0.05 μ m·s⁻¹. Cell-surface TCR levels were analyzed (*left*) as well as levels of activated signaling TCRs (*right*). (B) The same 24 hour simulation as in (A) was run without active movement of the TCR and CD2 towards the contact area. (C) The same 24 hour simulation as in (A) was run in the absence of CD2.

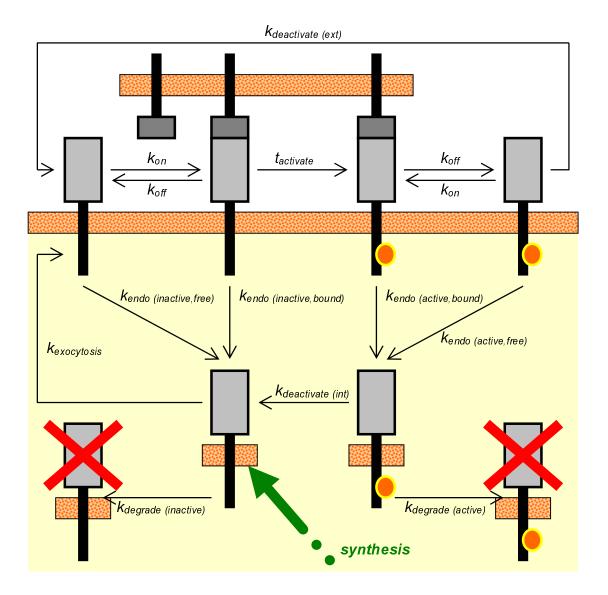

Figure 5.9: The effects of T10/T22^b levels on G8 γδ T cell TCR levels and signaling

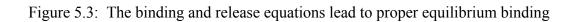

24 hour interactions were simulated in 10 second intervals between 5 μ m radius cells that used a 4 μ m radius contact area. Initially, 50,000 evenly-distributed G8 $\gamma\delta$ TCRs were simulated that could bind to 50, 250, 500, 1,000, 5,000, or 25,000 T22^b MHC class 1b molecules with maximal on-rates of 6.53x10⁴ M⁻¹s⁻¹ and off-rates of 8.1x10⁻³ s⁻¹. TCRs diffused with a very slow diffusion coefficient of 5.0x10⁻¹⁵ m²s⁻¹ and were set to activate if bound continuously for 20 seconds. In addition, TCRs moved to the contact area at 0.05 μ m·s⁻¹ and TCR/T22^b complexes also actively moved at that rate and diffused with a diffusion coefficient of 2.0x10⁻¹⁵ m²s⁻¹. Unbound T22^b molecules diffused with a diffusion coefficient of 2.0x10⁻¹⁴ m²s⁻¹. 0.0167 TCRs were synthesized per second. 13% of TCRs started out as being internal. The rate constant used for TCR internalization was 0.00167 s⁻¹. The rate constants used for resting and activated TCR internalization was 0.01155 s⁻¹. In addition, there were 50,000 LFA-1 and 50,000 ICAM-1 molecules. Cell-surface levels of the G8 $\gamma\delta$ TCR were analyzed (*top*) as well as activated signaling G8 $\gamma\delta$ TCRs (*bottom*).

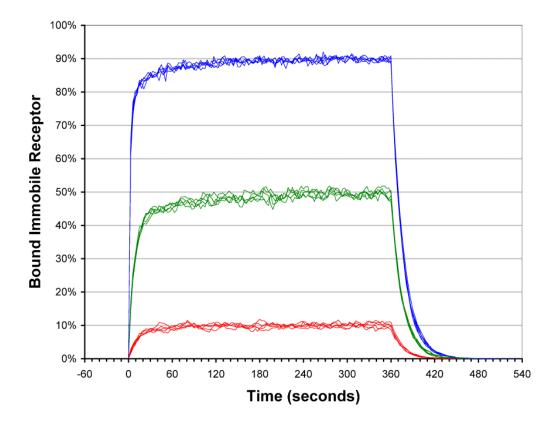

Figure 5.10: Peptide-independent MHC accumulation

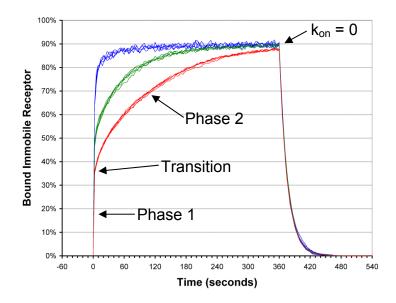
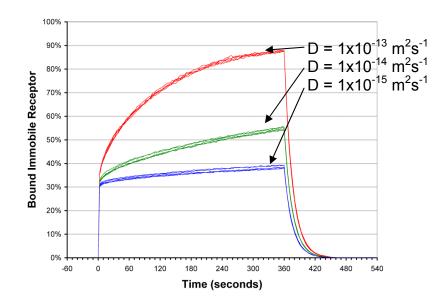
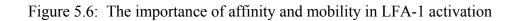
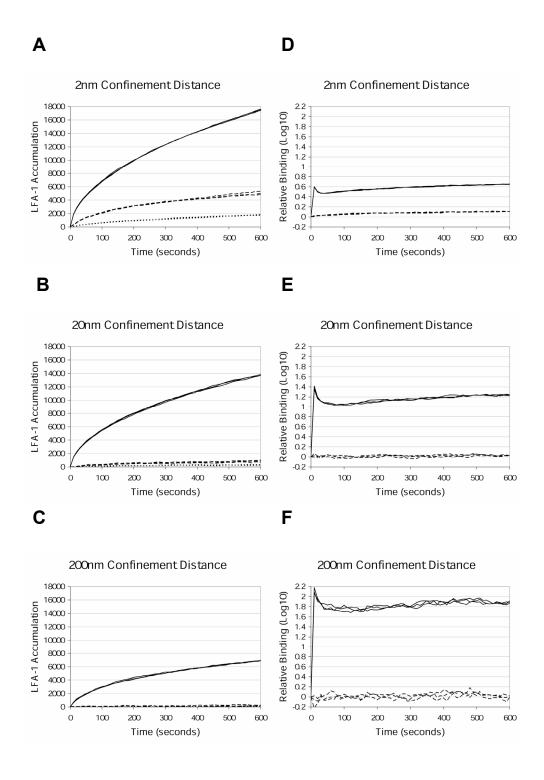

(A) 10 minute interactions were simulated in 0.1 second intervals between 5 μ m radius cells that used a 4 μ m radius contact area. Initially, 50,000 evenly-distributed


TCRs were simulated that bound to 5,000 peptide/MHC complexes with maximal onrates of 1.57x10³ M⁻¹s⁻¹ and off-rates of 0.063 s⁻¹ and 50,000 additional irrelevant peptide/MHC complexes with maximal on-rates of 1.0×10^3 M⁻¹s⁻¹ and off-rates of 2.0 s⁻¹. TCRs moved to the contact area at 0.15 μ m·s⁻¹ and TCR/MHC complexes also actively moved at that rate. TCRs were set to diffuse with a very slow diffusion coefficient of $5.0 \times 10^{-15} \text{ m}^2 \text{s}^{-1}$ and were set to activate if bound continuously for 20 seconds. 0.0167 TCRs were synthesized per second. 13% of TCRs started out as being internal. The rate constant used for TCR externalization was 0.00167 s⁻¹. The rate constants used for resting and activated TCR internalization were 0.00025 and 0.00197 s⁻¹, respectively. The rate constant used for TCR deactivation was 0.01155 s⁻¹. In addition, there were 50,000 LFA-1, 50,000 ICAM-1, 14,000 CD2, and 50,000 CD48 molecules. CD2 and CD2/CD48 complexes moved to the synapse at a rate of 0.15 μ m·s⁻¹. The distribution of molecules was analyzed after 0 (top left), 3 (top right), and 10 (bottom left) minutes and also after 10 minutes in the absence of TCR and CD2 movement towards the contact area (bottom right). ICAM-1 (red), agonist peptide/MHC (green) and irrelevant peptide/MHC (blue) are shown on the lower left sphere. CD2 (blue) and CD48 (green) are shown on the upper middle sphere. LFA-1 (red) and TCR (green) are shown on the right lower sphere. (B) The green (*left*) and blue (*right*) channels of the 10 minute image were analyzed in order to locate the different MHC molecules and CD48 better.







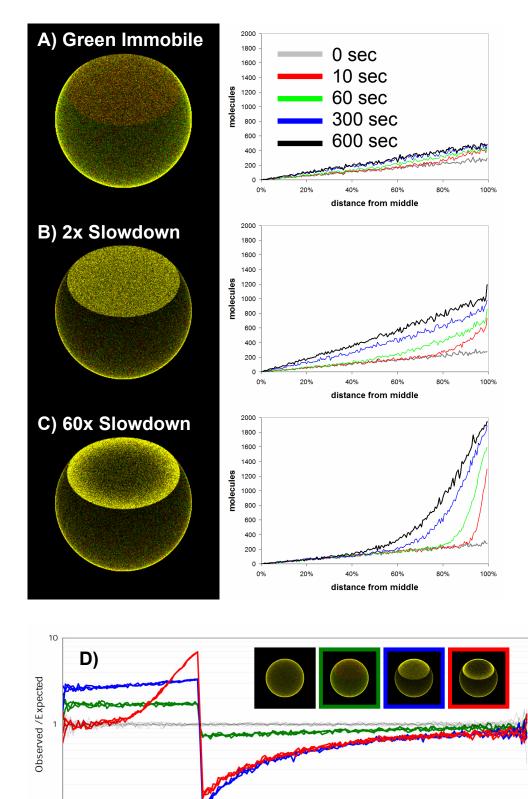
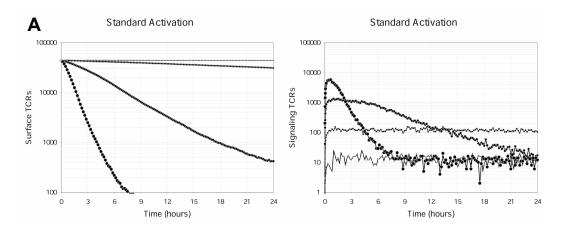
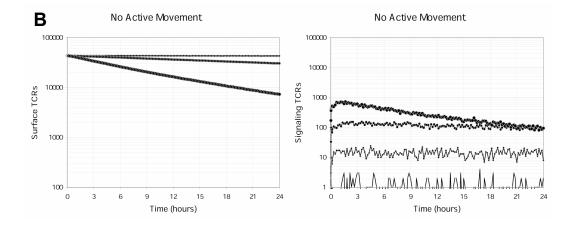

Figure 5.4: Receptor binding takes place in two phases

Figure 5.5: Diffusion affects the second phase of binding




0.1

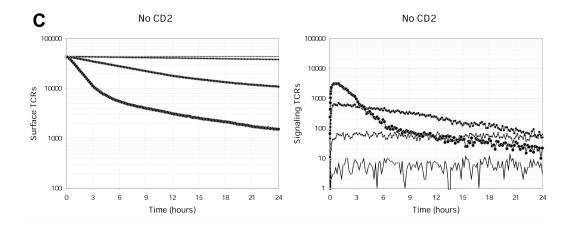
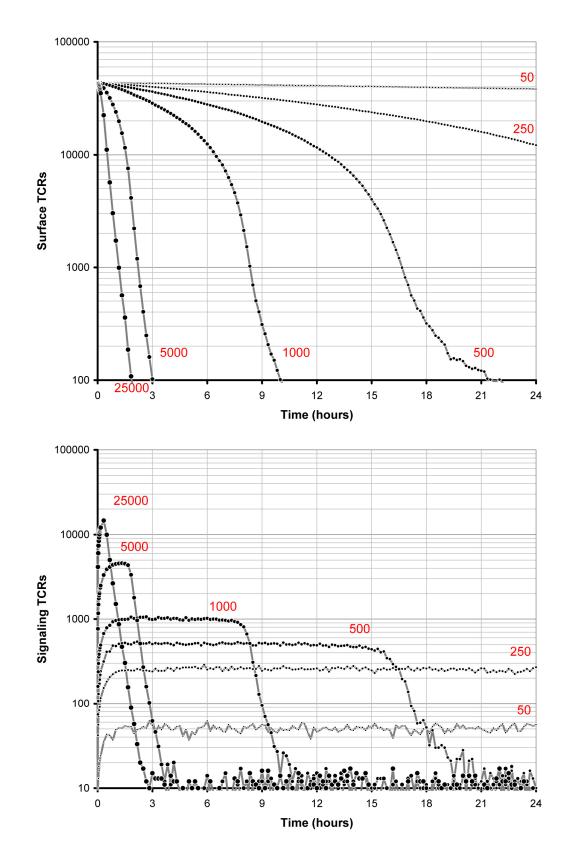
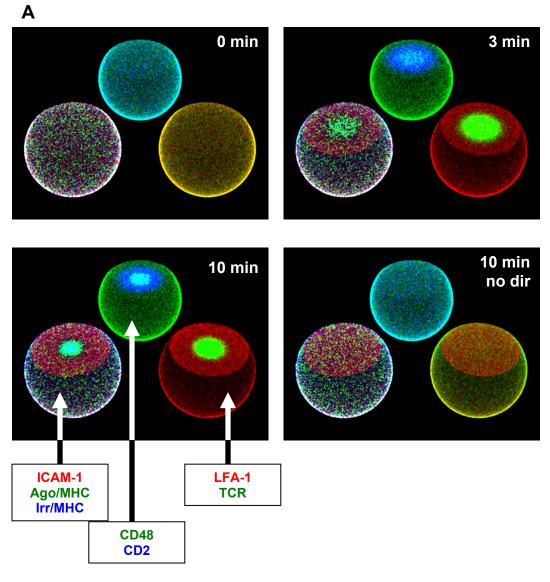
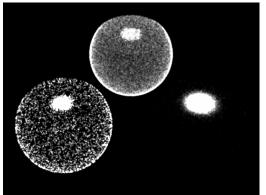
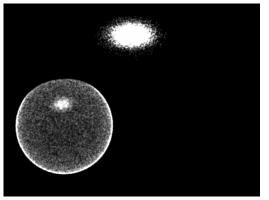

Degrees from Middle of Contact Area

Figure 5.7: Whichever way mobile molecules bind, they always form a synapse

Figure 5.8: Ligand numbers, directed movement, and CD2 are all important for T cell activation


Figure 5.9: The effects of T10/T22^b levels on G8 $\gamma\delta$ T cell TCR levels and signaling


Figure 5.10: Peptide-independent MHC accumulation

В

CD48, agonist peptide/MHC, and TCR

CD2 and irrelevant peptide/MHC

List of References

Agrawal, S., J. Marquet, G. J. Freeman, A. Tawab, P. L. Bouteiller, P. Roth, W. Bolton, G. Ogg, L. Boumsell and A. Bensussan (1999). "Cutting edge: MHC class I triggering by a novel cell surface ligand costimulates proliferation of activated human T cells." *J Immunol* **162**(3): 1223-6.

Allison, J. P. and W. L. Havran (1991). "The immunobiology of T cells with invariant gamma delta antigen receptors." *Annu Rev Immunol* **9**: 679-705.

Andreae, S., S. Buisson and F. Triebel (2003). "MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223)." *Blood* **102**(6): 2130-7.

Ariza, A., D. Lopez, E. M. Castella, C. Munoz, M. J. Zujar and J. L. Mate (1996).
"Expression of CD15 in normal and metaplastic Paneth cells of the digestive tract." *J Clin Pathol* 49(6): 474-7.

Asarnow, D. M., T. Goodman, L. LeFrancois and J. P. Allison (1989). "Distinct antigen receptor repertoires of two classes of murine epithelium-associated T cells." *Nature* **341**(6237): 60-2.

Ashkar, S., G. F. Weber, V. Panoutsakopoulou, M. E. Sanchirico, M. Jansson, S.
Zawaideh, S. R. Rittling, D. T. Denhardt, M. J. Glimcher and H. Cantor (2000). "Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity." *Science* 287(5454): 860-4.

Azuara, V., K. Grigoriadou, M. P. Lembezat, C. Nagler-Anderson and P. Pereira (2001). "Strain-specific TCR repertoire selection of IL-4-producing Thy-1 dull gamma delta thymocytes." *Eur J Immunol* **31**(1): 205-14. Azzam, H. S., J. B. DeJarnette, K. Huang, R. Emmons, C. S. Park, C. L. Sommers, D. El-Khoury, E. W. Shores and P. E. Love (2001). "Fine tuning of TCR signaling by CD5." *J Immunol* **166**(9): 5464-72.

Baixeras, E., B. Huard, C. Miossec, S. Jitsukawa, M. Martin, T. Hercend, C. Auffray, F. Triebel and D. Piatier-Tonneau (1992). "Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens." *J Exp Med* **176**(2): 327-37.

Barakonyi, A., M. Rabot, A. Marie-Cardine, M. Aguerre-Girr, B. Polgar, V. Schiavon, A. Bensussan and P. Le Bouteiller (2004). "Cutting edge: engagement of CD160 by its HLA-C physiological ligand triggers a unique cytokine profile secretion in the cytotoxic peripheral blood NK cell subset." *J Immunol* **173**(9): 5349-54.

Bargatze, R. F., M. A. Jutila and E. C. Butcher (1995). "Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer's patch-HEV in situ: the multistep model confirmed and refined." *Immunity* **3**(1): 99-108.

Barrett, T. A., Y. Tatsumi and J. A. Bluestone (1993). "Tolerance of T cell receptor gamma/delta cells in the intestine." *J Exp Med* **177**(6): 1755-62.

Bauer, A., O. Huber and R. Kemler (1998). "Pontin52, an interaction partner of betacatenin, binds to the TATA box binding protein." *Proc Natl Acad Sci U S A* **95**(25): 14787-92.

Beadling, C., K. M. Druey, G. Richter, J. H. Kehrl and K. A. Smith (1999). "Regulators of G protein signaling exhibit distinct patterns of gene expression and target G protein specificity in human lymphocytes." *J Immunol* **162**(5): 2677-82.

Bell, G. I., M. Dembo and P. Bongrand (1984). "Cell adhesion. Competition between nonspecific repulsion and specific bonding." *Biophys J* **45**(6): 1051-64.

Bhaskaran, G., A. Nii, S. Sone and T. Ogura (1992). "Differential effects of interleukin-4 on superoxide anion production by human alveolar macrophages stimulated with lipopolysaccharide and interferon-gamma." *J Leukoc Biol* **52**(2): 218-23.

Blank, C., I. Brown, R. Marks, H. Nishimura, T. Honjo and T. F. Gajewski (2003).
"Absence of programmed death receptor 1 alters thymic development and enhances generation of CD4/CD8 double-negative TCR-transgenic T cells." *J Immunol* 171(9): 4574-81.

Bluestone, J. A., R. Q. Cron, M. Cotterman, B. A. Houlden and L. A. Matis (1988).
"Structure and specificity of T cell receptor gamma/delta on major histocompatibility complex antigen-specific CD3+, CD4-, CD8- T lymphocytes." *J Exp Med* 168(5): 1899-916.

Bogdan, C., S. Stenger, M. Rollinghoff and W. Solbach (1991). "Cytokine interactions in experimental cutaneous leishmaniasis. Interleukin 4 synergizes with interferon-gamma to activate murine macrophages for killing of Leishmania major amastigotes." *Eur J Immunol* **21**(2): 327-33.

Boismenu, R., L. Feng, Y. Y. Xia, J. C. Chang and W. L. Havran (1996). "Chemokine expression by intraepithelial gamma delta T cells. Implications for the recruitment of inflammatory cells to damaged epithelia." *J Immunol* **157**(3): 985-92.

Boismenu, R. and W. L. Havran (1994). "Modulation of epithelial cell growth by intraepithelial gamma delta T cells." *Science* **266**(5188): 1253-5.

Boismenu, R. and W. L. Havran (1997). "An innate view of gamma delta T cells." *Curr Opin Immunol* **9**(1): 57-63.

Bonneville, M., K. Ito, E. G. Krecko, S. Itohara, D. Kappes, I. Ishida, O. Kanagawa, C.
A. Janeway, D. B. Murphy and S. Tonegawa (1989). "Recognition of a self major histocompatibility complex TL region product by gamma delta T-cell receptors." *Proc Natl Acad Sci U S A* 86(15): 5928-32.

Borst, J., R. J. van de Griend, J. W. van Oostveen, S. L. Ang, C. J. Melief, J. G. Seidman and R. L. Bolhuis (1987). "A T-cell receptor gamma/CD3 complex found on cloned functional lymphocytes." *Nature* **325**(6106): 683-8.

Brandes, M., K. Willimann, A. B. Lang, K. H. Nam, C. Jin, M. B. Brenner, C. T. Morita and B. Moser (2003). "Flexible migration program regulates gamma delta T-cell involvement in humoral immunity." *Blood* **102**(10): 3693-701.

Brenner, M. B., J. McLean, H. Scheft, J. Riberdy, S. L. Ang, J. G. Seidman, P. Devlin and M. S. Krangel (1987). "Two forms of the T-cell receptor gamma protein found on peripheral blood cytotoxic T lymphocytes." *Nature* **325**(6106): 689-94.

Brown, M. H., K. Boles, P. A. van der Merwe, V. Kumar, P. A. Mathew and A. N. Barclay (1998). "2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48." *J Exp Med* **188**(11): 2083-90.

Buisson, S. and F. Triebel (2003). "MHC class II engagement by its ligand LAG-3 (CD223) leads to a distinct pattern of chemokine and chemokine receptor expression by human dendritic cells." *Vaccine* **21**(9-10): 862-8.

Burchert, A., D. Cai, L. Hofbauer, M. K. Samuelsson, E. P. Slater, J. Duyster, M. Ritter, A. Hochhaus, R. Mueller, M. Eilers, M. Schmidt and A. Neubauer (2003). "Interferon Consensus Sequence Binding Protein (ICSBP, IRF-8) antagonizes BCR/ABL and down-regulates bcl-2." *Blood*.

Burdin, N., L. Brossay and M. Kronenberg (1999). "Immunization with alphagalactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis." *Eur J Immunol* **29**(6): 2014-25.

Carding, S. R., W. Allan, S. Kyes, A. Hayday, K. Bottomly and P. C. Doherty (1990). "Late dominance of the inflammatory process in murine influenza by gamma/delta + T cells." *J Exp Med* **172**(4): 1225-31.

Carding, S. R. and P. J. Egan (2000). "The importance of gamma delta T cells in the resolution of pathogen-induced inflammatory immune responses." *Immunol Rev* **173**: 98-108.

Carnaud, C., D. Lee, O. Donnars, S. H. Park, A. Beavis, Y. Koezuka and A. Bendelac (1999). "Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells." *J Immunol* **163**(9): 4647-50.

Che, T., Y. You, D. Wang, M. J. Tanner, V. M. Dixit and X. Lin (2004). "MALT1/Paracaspase is a signaling component downstream of CARMA1 and mediates T cell receptor-induced NF-kappa B activation." *J Biol Chem*.

Chen, B. P., G. Liang, J. Whelan and T. Hai (1994). "ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms." *J Biol Chem* **269**(22): 15819-26.

Chen, C. Z., M. Li, D. de Graaf, S. Monti, B. Gottgens, M. J. Sanchez, E. S. Lander, T. R. Golub, A. R. Green and H. F. Lodish (2002). "Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells." *Proc Natl Acad Sci U S A* **99**(24): 15468-73.

Chien, Y. H., R. Jores and M. P. Crowley (1996). "Recognition by gamma/delta T cells." *Annu Rev Immunol* **14**: 511-32.

Christmas, S. E. and A. Meager (1990). "Production of interferon-gamma and tumour necrosis factor-alpha by human T-cell clones expressing different forms of the gamma delta receptor." *Immunology* **71**(4): 486-92.

Coombs, D., A. M. Kalergis, S. G. Nathenson, C. Wofsy and B. Goldstein (2002). "Activated TCRs remain marked for internalization after dissociation from pMHC." *Nat Immunol* **3**(10): 926-31.

Costello, P. S., M. Gallagher and D. A. Cantrell (2002). "Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse." *Nat Immunol* **3**(11): 1082-9.

Cron, R. Q., T. F. Gajewski, S. O. Sharrow, F. W. Fitch, L. A. Matis and J. A. Bluestone (1989). "Phenotypic and functional analysis of murine CD3+,CD4-,CD8- TCR-gamma delta-expressing peripheral T cells." *J Immunol* **142**(11): 3754-62.

Crowley, M. P., A. M. Fahrer, N. Baumgarth, J. Hampl, I. Gutgemann, L. Teyton and Y. Chien (2000). "A population of murine gammadelta T cells that recognize an inducible MHC class Ib molecule." *Science* **287**(5451): 314-6.

Crowley, M. P., Z. Reich, N. Mavaddat, J. D. Altman and Y. Chien (1997). "The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the gammadelta T cell, G8." *J Exp Med* **185**(7): 1223-30.

Crowley, M. T., C. R. Reilly and D. Lo (1999). "Influence of lymphocytes on the presence and organization of dendritic cell subsets in the spleen." *J Immunol* **163**(9): 4894-900.

De Miranda, J., R. Panizzutti, V. N. Foltyn and H. Wolosker (2002). "Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine." *Proc Natl Acad Sci U S A* **99**(22): 14542-7.

De Vries, L., B. Zheng, T. Fischer, E. Elenko and M. G. Farquhar (2000). "The regulator of G protein signaling family." *Annu Rev Pharmacol Toxicol* **40**: 235-71.

Dent, A. L., L. A. Matis, F. Hooshmand, S. M. Widacki, J. A. Bluestone and S. M. Hedrick (1990). "Self-reactive gamma delta T cells are eliminated in the thymus." *Nature* **343**(6260): 714-9.

Droin, N. M., M. J. Pinkoski, E. Dejardin and D. R. Green (2003). "Egr family members regulate nonlymphoid expression of Fas ligand, TRAIL, and tumor necrosis factor during immune responses." *Mol Cell Biol* **23**(21): 7638-47.

Dustin, M. L., S. K. Bromley, M. M. Davis and C. Zhu (2001). "Identification of self through two-dimensional chemistry and synapses." *Annu Rev Cell Dev Biol* **17**: 133-57.

Dustin, M. L., M. W. Olszowy, A. D. Holdorf, J. Li, S. Bromley, N. Desai, P. Widder, F. Rosenberger, P. A. van der Merwe, P. M. Allen and A. S. Shaw (1998). "A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts." *Cell* **94**(5): 667-77.

Fahrer, A. M., Y. Konigshofer, E. M. Kerr, G. Ghandour, D. H. Mack, M. M. Davis and Y. H. Chien (2001). "Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile." *Proc Natl Acad Sci U S A* **98**(18): 10261-6.

Fanzo, J. C., C. M. Hu, S. Y. Jang and A. B. Pernis (2003). "Regulation of lymphocyte apoptosis by interferon regulatory factor 4 (IRF-4)." *J Exp Med* **197**(3): 303-14.

Feinstein, M. B., S. M. Fernandez and R. I. Sha'afi (1975). "Fluidity of natural membranes and phosphatidylserine and ganglioside dispersions. Effect of local anesthetics, cholesterol and protein." *Biochim Biophys Acta* **413**(3): 354-70.

Ferrick, D. A., M. D. Schrenzel, T. Mulvania, B. Hsieh, W. G. Ferlin and H. Lepper (1995). "Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo." *Nature* **373**(6511): 255-7.

Fiorini, E., I. Schmitz, W. E. Marissen, S. L. Osborn, M. Touma, T. Sasada, P. A. Reche,
E. V. Tibaldi, R. E. Hussey, A. M. Kruisbeek, E. L. Reinherz and L. K. Clayton (2002).
"Peptide-induced negative selection of thymocytes activates transcription of an NF-kappa B inhibitor." *Mol Cell* 9(3): 637-48.

Freeman, G. J., J. G. Gribben, V. A. Boussiotis, J. W. Ng, V. A. Restivo, Jr., L. A. Lombard, G. S. Gray and L. M. Nadler (1993). "Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation." *Science* **262**(5135): 909-11.

Freemantle, S. J., H. B. Portland, K. Ewings, F. Dmitrovsky, K. DiPetrillo, M. J. Spinella and E. Dmitrovsky (2002). "Characterization and tissue-specific expression of human GSK-3-binding proteins FRAT1 and FRAT2." *Gene* **291**(1-2): 17-27.

Fu, Y. X., C. E. Roark, K. Kelly, D. Drevets, P. Campbell, R. O'Brien and W. Born (1994). "Immune protection and control of inflammatory tissue necrosis by gamma delta T cells." *J Immunol* 153(7): 3101-15.

Furukawa, Y., T. Kawasoe, Y. Daigo, T. Nishiwaki, H. Ishiguro, M. Takahashi, J. Kitayama and Y. Nakamura (2001). "Isolation of a novel human gene, ARHGAP9,

encoding a rho-GTPase activating protein." *Biochem Biophys Res Commun* 284(3): 643-9.

Glynne, R., S. Akkaraju, J. I. Healy, J. Rayner, C. C. Goodnow and D. H. Mack (2000). "How self-tolerance and the immunosuppressive drug FK506 prevent B-cell mitogenesis." *Nature* **403**(6770): 672-6.

Goodman, T. and L. Lefrancois (1988). "Expression of the gamma-delta T-cell receptor on intestinal CD8+ intraepithelial lymphocytes." *Nature* **333**(6176): 855-8.

Guehler, S. R., J. A. Bluestone and T. A. Barrett (1996). "Immune deviation of 2C transgenic intraepithelial lymphocytes in antigen-bearing hosts." *J Exp Med* **184**(2): 493-503.

Guehler, S. R., R. J. Finch, J. A. Bluestone and T. A. Barrett (1998). "Increased threshold for TCR-mediated signaling controls self reactivity of intraepithelial lymphocytes." *J Immunol* **160**(11): 5341-6.

Hayday, A. and R. Tigelaar (2003). "Immunoregulation in the tissues by gammadelta T cells." *Nat Rev Immunol* **3**(3): 233-42.

Hayday, A. C. (2000). "[gamma][delta] cells: a right time and a right place for a conserved third way of protection." *Annu Rev Immunol* **18**: 975-1026.

Hiromatsu, K., Y. Yoshikai, G. Matsuzaki, S. Ohga, K. Muramori, K. Matsumoto, J. A. Bluestone and K. Nomoto (1992). "A protective role of gamma/delta T cells in primary infection with Listeria monocytogenes in mice." *J Exp Med* **175**(1): 49-56.

Ho, I. C., J. P. Arm, C. O. Bingham, 3rd, A. Choi, K. F. Austen and L. H. Glimcher (2001). "A novel group of phospholipase A2s preferentially expressed in type 2 helper T cells." *J Biol Chem* **276**(21): 18321-6.

Hock, H., M. J. Hamblen, H. M. Rooke, J. W. Schindler, S. Saleque, Y. Fujiwara and S.H. Orkin (2004). "Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells." *Nature* 431(7011): 1002-7.

Hollinger, S. and J. R. Hepler (2002). "Cellular regulation of RGS proteins: modulators and integrators of G protein signaling." *Pharmacol Rev* **54**(3): 527-59.

Horner, A. A., H. Jabara, N. Ramesh and R. S. Geha (1995). "gamma/delta T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes." *J Exp Med* **181**(3): 1239-44.

Houlden, B. A., L. A. Matis, R. Q. Cron, S. M. Widacki, G. D. Brown, C. Pampeno, D. Meruelo and J. A. Bluestone (1989). "A TCR gamma delta cell recognizing a novel TL-encoded gene product." *Cold Spring Harb Symp Quant Biol* **54 Pt 1**: 45-55.

Hsu, J. C., R. Bravo and R. Taub (1992). "Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration." *Mol Cell Biol* **12**(10): 4654-65.

Hu, C. M., S. Y. Jang, J. C. Fanzo and A. B. Pernis (2002). "Modulation of T cell cytokine production by interferon regulatory factor-4." *J Biol Chem* **277**(51): 49238-46.

Huang, X., S. A. McClellan, R. P. Barrett and L. D. Hazlett (2002). "IL-18 contributes to host resistance against infection with Pseudomonas aeruginosa through induction of IFN-gamma production." *J Immunol* **168**(11): 5756-63.

Huber, H., P. Descossy, E. Regier, R. van Brandwijk and J. Knop (1995). "Activation of phenotypically heterogeneous murine T cell receptor gamma delta + dendritic epidermal T cells by self-antigen(s)." *Int Arch Allergy Immunol* **107**(4): 498-507.

Huber, S. A., D. Graveline, W. K. Born and R. L. O'Brien (2001). "Cytokine production by Vgamma(+)-T-cell subsets is an important factor determining CD4(+)-Th-cell phenotype and susceptibility of BALB/c mice to coxsackievirus B3-induced myocarditis." *J Virol* **75**(13): 5860-9.

Huppa, J. B., M. Gleimer, C. Sumen and M. M. Davis (2003). "Continuous T cell receptor signaling required for synapse maintenance and full effector potential." *Nat Immunol* **4**(8): 749-55.

Iezzi, G., K. Karjalainen and A. Lanzavecchia (1998). "The duration of antigenic stimulation determines the fate of naive and effector T cells." *Immunity* **8**(1): 89-95.

Ishiguro, H., T. Tsunoda, T. Tanaka, Y. Fujii, Y. Nakamura and Y. Furukawa (2001). "Identification of AXUD1, a novel human gene induced by AXIN1 and its reduced expression in human carcinomas of the lung, liver, colon and kidney." *Oncogene* **20**(36): 5062-6.

Ito, K., L. Van Kaer, M. Bonneville, S. Hsu, D. B. Murphy and S. Tonegawa (1990). "Recognition of the product of a novel MHC TL region gene (27b) by a mouse gamma delta T cell receptor." *Cell* **62**(3): 549-61.

Iyer, V. R., M. B. Eisen, D. T. Ross, G. Schuler, T. Moore, J. C. Lee, J. M. Trent, L. M. Staudt, J. Hudson, Jr., M. S. Boguski, D. Lashkari, D. Shalon, D. Botstein and P. O. Brown (1999). "The transcriptional program in the response of human fibroblasts to serum." *Science* **283**(5398): 83-7.

Jacob, J. and D. Baltimore (1999). "Modelling T-cell memory by genetic marking of memory T cells in vivo." *Nature* **399**(6736): 593-7.

Jameson, J., K. Ugarte, N. Chen, P. Yachi, E. Fuchs, R. Boismenu and W. L. Havran (2002). "A role for skin gammadelta T cells in wound repair." *Science* **296**(5568): 747-9.

Janis, E. M., S. H. Kaufmann, R. H. Schwartz and D. M. Pardoll (1989). "Activation of gamma delta T cells in the primary immune response to Mycobacterium tuberculosis." *Science* **244**(4905): 713-6.

Kaliyaperumal, A., R. Falchetto, A. Cox, R. Dick, 2nd, J. Shabanowitz, Y. H. Chien, L. Matis, D. F. Hunt and J. A. Bluestone (1995). "Functional expression and recognition of nonclassical MHC class I T10b is not peptide-dependent." *J Immunol* **155**(5): 2379-86.

Kashiwakura, J., N. Suzuki, M. Takeno, S. Itoh, T. Oku, T. Sakane, S. Nakajin and S. Toyoshima (2002). "Evidence of autophosphorylation in Txk: Y91 is an autophosphorylation site." *Biol Pharm Bull* **25**(6): 718-21.

Kasper, L. H., T. Matsuura, S. Fonseka, J. Arruda, J. Y. Channon and I. A. Khan (1996)."Induction of gammadelta T cells during acute murine infection with Toxoplasma gondii." *J Immunol* 157(12): 5521-7.

Kaufmann, S. H. (1996). "gamma/delta and other unconventional T lymphocytes: what do they see and what do they do?" *Proc Natl Acad Sci U S A* **93**(6): 2272-9.

Kawaguchi-Miyashita, M., S. Shimada, Y. Matsuoka, M. Ohwaki and M. Nanno (2000). "Activation of T-cell receptor-gammadelta+ cells in the intestinal epithelia of KN6 transgenic mice." *Immunology* **101**(1): 38-45.

Kerr, E. M. (1998). Yersinia pseudotuberculosis infection in C57BL/6 mice: Gene expression, kinetics, and essential cells in the immune response to a food-borne pathogen. <u>Immunology program</u>. Stanford, CA, Stanford University: 131.

Kim, M., C. V. Carman and T. A. Springer (2003). "Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins." *Science* **301**(5640): 1720-5.

King, D. P., D. M. Hyde, K. A. Jackson, D. M. Novosad, T. N. Ellis, L. Putney, M. Y. Stovall, L. S. Van Winkle, B. L. Beaman and D. A. Ferrick (1999). "Cutting edge: protective response to pulmonary injury requires gamma delta T lymphocytes." *J Immunol* **162**(9): 5033-6.

Klein, J. R. (1986). "Ontogeny of the Thy-1-, Lyt-2+ murine intestinal intraepithelial lymphocyte. Characterization of a unique population of thymus-independent cytotoxic effector cells in the intestinal mucosa." *J Exp Med* **164**(1): 309-14.

Klein, J. R. and M. F. Kagnoff (1984). "Nonspecific recruitment of cytotoxic effector cells in the intestinal mucosa of antigen-primed mice." *J Exp Med* **160**(6): 1931-6.

Koduri, R. S., J. O. Gronroos, V. J. Laine, C. Le Calvez, G. Lambeau, T. J. Nevalainen and M. H. Gelb (2002). "Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A(2)." *J Biol Chem* **277**(8): 5849-57.

Komano, H., Y. Fujiura, M. Kawaguchi, S. Matsumoto, Y. Hashimoto, S. Obana, P. Mombaerts, S. Tonegawa, H. Yamamoto, S. Itohara and et al. (1995). "Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells." *Proc Natl Acad Sci U S A* **92**(13): 6147-51.

Koyama, T., T. Araiso and J. Nitta (1987). "Dynamics of membrane structure of frog erythrocyte ghosts measured with a nanosecond fluorometer." *Biorheology* **24**(3): 311-7.

Krause, M., A. S. Sechi, M. Konradt, D. Monner, F. B. Gertler and J. Wehland (2000). "Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilatorstimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton." *J Cell Biol* **149**(1): 181-94.

Kucik, D. F., M. L. Dustin, J. M. Miller and E. J. Brown (1996). "Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes." *J Clin Invest* **97**(9): 2139-44.

Lacana, E. and L. D'Adamio (1999). "Regulation of Fas ligand expression and cell death by apoptosis-linked gene 4." *Nat Med* **5**(5): 542-7.

Landmann, R., A. E. Fisscher and J. P. Obrecht (1992). "Interferon-gamma and interleukin-4 down-regulate soluble CD14 release in human monocytes and macrophages." *J Leukoc Biol* **52**(3): 323-30.

Langlet, C., A. M. Bernard, P. Drevot and H. T. He (2000). "Membrane rafts and signaling by the multichain immune recognition receptors." *Curr Opin Immunol* **12**(3): 250-5.

Lanier, L. L., T. J. Kipps and J. H. Phillips (1985). "Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leu-11 antigen)." *J Exp Med* **162**(6): 2089-106.

Laub, F., R. Aldabe, V. Friedrich, Jr., S. Ohnishi, T. Yoshida and F. Ramirez (2001). "Developmental expression of mouse Kruppel-like transcription factor KLF7 suggests a potential role in neurogenesis." *Dev Biol* **233**(2): 305-18. Lee, A. H., J. H. Hong and Y. S. Seo (2000). "Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors." *Biochem J* **350 Pt 1**: 131-8.

Lee, K. H., A. R. Dinner, C. Tu, G. Campi, S. Raychaudhuri, R. Varma, T. N. Sims, W.
R. Burack, H. Wu, J. Wang, O. Kanagawa, M. Markiewicz, P. M. Allen, M. L. Dustin, A.
K. Chakraborty and A. S. Shaw (2003). "The immunological synapse balances T cell receptor signaling and degradation." *Science* 302(5648): 1218-22.

Lefrancois, L. and T. Goodman (1989). "In vivo modulation of cytolytic activity and Thy-1 expression in TCR-gamma delta+ intraepithelial lymphocytes." *Science* **243**(4899): 1716-8.

Leite-De-Moraes, M. C., A. Hameg, M. Pacilio, Y. Koezuka, M. Taniguchi, L. Van Kaer, E. Schneider, M. Dy and A. Herbelin (2001). "IL-18 enhances IL-4 production by ligandactivated NKT lymphocytes: a pro-Th2 effect of IL-18 exerted through NKT cells." *J Immunol* **166**(2): 945-51.

Li, S. H., S. C. Chan, A. Toshitani, D. Y. Leung and J. M. Hanifin (1992). "Synergistic effects of interleukin 4 and interferon-gamma on monocyte phosphodiesterase activity." *J Invest Dermatol* **99**(1): 65-70.

Linsley, P. S., W. Brady, M. Urnes, L. S. Grosmaire, N. K. Damle and J. A. Ledbetter (1991). "CTLA-4 is a second receptor for the B cell activation antigen B7." *J Exp Med* **174**(3): 561-9.

Lippert, E., D. L. Yowe, J. A. Gonzalo, J. P. Justice, J. M. Webster, E. R. Fedyk, M. Hodge, C. Miller, J. C. Gutierrez-Ramos, F. Borrego, A. Keane-Myers and K. M. Druey (2003). "Role of regulator of G protein signaling 16 in inflammation-induced T lymphocyte migration and activation." *J Immunol* **171**(3): 1542-55.

Lipshutz, R. J., S. P. Fodor, T. R. Gingeras and D. J. Lockhart (1999). "High density synthetic oligonucleotide arrays." *Nat Genet* **21**(1 Suppl): 20-4.

Liu, H., M. Rhodes, D. L. Wiest and D. A. Vignali (2000). "On the dynamics of TCR:CD3 complex cell surface expression and downmodulation." *Immunity* **13**(5): 665-75.

Liu, W. K., P. F. Yen, C. Y. Chien, M. J. Fann, J. Y. Su and C. K. Chou (2004). "The inhibitor ABIN-2 disrupts the interaction of receptor-interacting protein with the kinase subunit IKKgamma to block activation of the transcription factor NF-kappaB and potentiate apoptosis." *Biochem J* **378**(Pt 3): 867-76.

Lohoff, M., H. W. Mittrucker, A. Brustle, F. Sommer, B. Casper, M. Huber, D. A. Ferrick, G. S. Duncan and T. W. Mak (2004). "Enhanced TCR-induced apoptosis in interferon regulatory factor 4-deficient CD4(+) Th cells." *J Exp Med* **200**(2): 247-53.

Lollo, B. A., K. W. Chan, E. M. Hanson, V. T. Moy and A. A. Brian (1993). "Direct evidence for two affinity states for lymphocyte function-associated antigen 1 on activated T cells." *J Biol Chem* **268**(29): 21693-700.

Lu, B., A. F. Ferrandino and R. A. Flavell (2004). "Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells." *Nat Immunol* **5**(1): 38-44.

Lynch, E. A., C. A. Heijens, N. F. Horst, D. M. Center and W. W. Cruikshank (2003). "Cutting edge: IL-16/CD4 preferentially induces Th1 cell migration: requirement of CCR5." *J Immunol* **171**(10): 4965-8.

Ma, Q., M. Shimaoka, C. Lu, H. Jing, C. V. Carman and T. A. Springer (2002). "Activation-induced conformational changes in the I domain region of lymphocyte function-associated antigen 1." *J Biol Chem* **277**(12): 10638-41.

Maddox, D. M., A. Manlapat, P. Roon, P. Prasad, V. Ganapathy and S. B. Smith (2003). "Reduced-folate carrier (RFC) is expressed in placenta and yolk sac, as well as in cells of the developing forebrain, hindbrain, neural tube, craniofacial region, eye, limb buds and heart." *BMC Dev Biol* **3**(1): 6. Matis, L. A., R. Cron and J. A. Bluestone (1987). "Major histocompatibility complexlinked specificity of gamma delta receptor-bearing T lymphocytes." *Nature* **330**(6145): 262-4.

Matsue, H., P. D. Cruz, Jr., P. R. Bergstresser and A. Takashima (1993). "Profiles of cytokine mRNA expressed by dendritic epidermal T cells in mice." *J Invest Dermatol* **101**(4): 537-42.

Matsui, K., J. J. Boniface, P. Steffner, P. A. Reay and M. M. Davis (1994). "Kinetics of T-cell receptor binding to peptide/I-Ek complexes: correlation of the dissociation rate with T-cell responsiveness." *Proc Natl Acad Sci U S A* **91**(26): 12862-6.

McMenamin, C., C. Pimm, M. McKersey and P. G. Holt (1994). "Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells." *Science* **265**(5180): 1869-71.

Menne, C., T. Moller Sorensen, V. Siersma, M. von Essen, N. Odum and C. Geisler (2002). "Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling." *Eur J Immunol* **32**(3): 616-26.

Mombaerts, P., J. Arnoldi, F. Russ, S. Tonegawa and S. H. Kaufmann (1993). "Different roles of alpha beta and gamma delta T cells in immunity against an intracellular bacterial pathogen." *Nature* **365**(6441): 53-6.

Monks, C. R., B. A. Freiberg, H. Kupfer, N. Sciaky and A. Kupfer (1998). "Threedimensional segregation of supramolecular activation clusters in T cells." *Nature* **395**(6697): 82-6.

Mosley, R. L. and J. R. Klein (1992). "A rapid method for isolating murine intestine intraepithelial lymphocytes with high yield and purity." *J Immunol Methods* **156**(1): 19-26.

Moss, W. C., D. J. Irvine, M. M. Davis and M. F. Krummel (2002). "Quantifying signaling-induced reorientation of T cell receptors during immunological synapse formation." *Proc Natl Acad Sci U S A* **99**(23): 15024-9.

Nguyen, L. H., L. Espert, N. Mechti and D. M. Wilson, 3rd (2001). "The human interferon- and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro." *Biochemistry* **40**(24): 7174-9.

Niebylski, C. D. and H. R. Petty (1991). "Cyclosporine A induces an early and transient rigidification of lymphocyte membranes." *J Leukoc Biol* **49**(4): 407-15.

Niu, J., J. Profirovic, H. Pan, R. Vaiskunaite and T. Voyno-Yasenetskaya (2003). "G Protein betagamma subunits stimulate p114RhoGEF, a guanine nucleotide exchange factor for RhoA and Rac1: regulation of cell shape and reactive oxygen species production." *Circ Res* **93**(9): 848-56.

Noma, Y., P. Sideras, T. Naito, S. Bergstedt-Lindquist, C. Azuma, E. Severinson, T. Tanabe, T. Kinashi, F. Matsuda, Y. Yaoita and et al. (1986). "Cloning of cDNA encoding the murine IgG1 induction factor by a novel strategy using SP6 promoter." *Nature* **319**(6055): 640-6.

Ogasawara, T., M. Emoto, K. Kiyotani, K. Shimokata, T. Yoshida, Y. Nagai and Y. Yoshikai (1994). "Sendai virus pneumonia: evidence for the early recruitment of gamma delta T cells during the disease course." *J Virol* **68**(6): 4022-7.

Ouellette, A. J., R. M. Greco, M. James, D. Frederick, J. Naftilan and J. T. Fallon (1989). "Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium." *J Cell Biol* **108**(5): 1687-95.

Paterson, H. F., J. W. Savopoulos, O. Perisic, R. Cheung, M. V. Ellis, R. L. Williams and M. Katan (1995). "Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane." *Biochem J* **312** (**Pt 3**): 661-6.

Pena-Rossi, C., L. A. Zuckerman, J. Strong, J. Kwan, W. Ferris, S. Chan, A. Tarakhovsky, A. D. Beyers and N. Killeen (1999). "Negative regulation of CD4 lineage development and responses by CD5." *J Immunol* **163**(12): 6494-501.

Pennington, D. J., B. Silva-Santos, J. Shires, E. Theodoridis, C. Pollitt, E. L. Wise, R. E. Tigelaar, M. J. Owen and A. C. Hayday (2003). "The inter-relatedness and

interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells." *Nat Immunol* **4**(10): 991-8.

Periasamy, N., M. Armijo and A. S. Verkman (1991). "Picosecond rotation of small polar fluorophores in the cytosol of sea urchin eggs." *Biochemistry* **30**(51): 11836-41.

Qi, S. Y., J. T. Groves and A. K. Chakraborty (2001). "Synaptic pattern formation during cellular recognition." *Proc Natl Acad Sci U S A* **98**(12): 6548-53.

Rameh, L. E. and L. C. Cantley (1999). "The role of phosphoinositide 3-kinase lipid products in cell function." *J Biol Chem* **274**(13): 8347-50.

Robbins, S. H., S. C. Terrizzi, B. C. Sydora, T. Mikayama and L. Brossay (2003). "Differential regulation of killer cell lectin-like receptor G1 expression on T cells." *J Immunol* **170**(12): 5876-85.

Roberts, K., W. M. Yokoyama, P. J. Kehn and E. M. Shevach (1991). "The vitronectin receptor serves as an accessory molecule for the activation of a subset of gamma/delta T cells." *J Exp Med* **173**(1): 231-40.

Roberts, S. J., A. L. Smith, A. B. West, L. Wen, R. C. Findly, M. J. Owen and A. C. Hayday (1996). "T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium." *Proc Natl Acad Sci U S A* **93**(21): 11774-9.

Rock, E. P., P. R. Sibbald, M. M. Davis and Y. H. Chien (1994). "CDR3 length in antigen-specific immune receptors." *J Exp Med* **179**(1): 323-8.

Sakane, F. and H. Kanoh (1997). "Molecules in focus: diacylglycerol kinase." *Int J Biochem Cell Biol* **29**(10): 1139-43.

Sanui, T., A. Inayoshi, M. Noda, E. Iwata, M. Oike, T. Sasazuki and Y. Fukui (2003). "DOCK2 is essential for antigen-induced translocation of TCR and lipid rafts, but not PKC-theta and LFA-1, in T cells." *Immunity* **19**(1): 119-29. Schell, M. J. (2004). "The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective." *Philos Trans R Soc Lond B Biol Sci* **359**(1446): 943-64.

Schild, H., N. Mavaddat, C. Litzenberger, E. W. Ehrich, M. M. Davis, J. A. Bluestone, L.
Matis, R. K. Draper and Y. H. Chien (1994). "The nature of major histocompatibility complex recognition by gamma delta T cells." *Cell* 76(1): 29-37.

Sciammas, R., P. Kodukula, Q. Tang, R. L. Hendricks and J. A. Bluestone (1997). "T cell receptor-gamma/delta cells protect mice from herpes simplex virus type 1-induced lethal encephalitis." *J Exp Med* **185**(11): 1969-75.

Selin, L. K., P. A. Santolucito, A. K. Pinto, E. Szomolanyi-Tsuda and R. M. Welsh (2001). "Innate immunity to viruses: control of vaccinia virus infection by gamma delta T cells." *J Immunol* **166**(11): 6784-94.

Seoh, M. L., C. H. Ng, J. Yong, L. Lim and T. Leung (2003). "ArhGAP15, a novel human RacGAP protein with GTPase binding property." *FEBS Lett* **539**(1-3): 131-7.

Shires, J., E. Theodoridis and A. C. Hayday (2001). "Biological insights into TCRgammadelta+ and TCRalphabeta+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE)." *Immunity* **15**(3): 419-34.

Siebrecht, M. S., E. Hsia, C. Spychalski and C. Nagler-Anderson (1993). "Stimulation of murine intestinal intraepithelial lymphocytes by the bacterial superantigen staphylococcal enterotoxin B." *Int Immunol* **5**(7): 717-24.

Silva-Santos, B., D. J. Pennington and A. C. Hayday (2005). "Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors." *Science* **307**(5711): 925-8.

Sim, G. K. (1995). "Intraepithelial lymphocytes and the immune system." *Adv Immunol* **58**: 297-343.

Skeen, M. J. and H. K. Ziegler (1993). "Induction of murine peritoneal gamma/delta T cells and their role in resistance to bacterial infection." *J Exp Med* **178**(3): 971-84.

Smith, K., B. Seddon, M. A. Purbhoo, R. Zamoyska, A. G. Fisher and M.
Merkenschlager (2001). "Sensory adaptation in naive peripheral CD4 T cells." *J Exp Med* 194(9): 1253-61.

Song, A., Y. F. Chen, K. Thamatrakoln, T. A. Storm and A. M. Krensky (1999). "RFLAT-1: a new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes." *Immunity* **10**(1): 93-103.

Staal, F. J. and H. Clevers (2000). "Tcf/Lef transcription factors during T-cell development: unique and overlapping functions." *Hematol J* **1**(1): 3-6.

Stenger, S., W. Solbach, M. Rollinghoff and C. Bogdan (1991). "Cytokine interactions in experimental cutaneous leishmaniasis. II. Endogenous tumor necrosis factor-alpha production by macrophages is induced by the synergistic action of interferon (IFN)-gamma and interleukin (IL) 4 and accounts for the antiparasitic effect mediated by IFN-gamma and IL 4." *Eur J Immunol* **21**(7): 1669-75.

Strisovsky, K., J. Jiraskova, C. Barinka, P. Majer, C. Rojas, B. S. Slusher and J. Konvalinka (2003). "Mouse brain serine racemase catalyzes specific elimination of L-serine to pyruvate." *FEBS Lett* **535**(1-3): 44-8.

Sun, J., C. H. Bird, V. Sutton, L. McDonald, P. B. Coughlin, T. A. De Jong, J. A. Trapani and P. I. Bird (1996). "A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes." *J Biol Chem* **271**(44): 27802-9.

Sun, Z., C. W. Arendt, W. Ellmeier, E. M. Schaeffer, M. J. Sunshine, L. Gandhi, J. Annes, D. Petrzilka, A. Kupfer, P. L. Schwartzberg and D. R. Littman (2000). "PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes." *Nature* **404**(6776): 402-7.

Takagaki, Y., A. DeCloux, M. Bonneville and S. Tonegawa (1989). "Diversity of gamma delta T-cell receptors on murine intestinal intra-epithelial lymphocytes." *Nature* 339(6227): 712-4.

Takeba, Y., H. Nagafuchi, M. Takeno, J. Kashiwakura and N. Suzuki (2002). "Txk, a member of nonreceptor tyrosine kinase of Tec family, acts as a Th1 cell-specific transcription factor and regulates IFN-gamma gene transcription." *J Immunol* **168**(5): 2365-70.

Tarakhovsky, A., S. B. Kanner, J. Hombach, J. A. Ledbetter, W. Muller, N. Killeen and K. Rajewsky (1995). "A role for CD5 in TCR-mediated signal transduction and thymocyte selection." *Science* **269**(5223): 535-7.

Tsujimura, H., T. Nagamura-Inoue, T. Tamura and K. Ozato (2002). "IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage." *J Immunol* **169**(3): 1261-9.

Turner, J. and M. Crossley (1998). "Cloning and characterization of mCtBP2, a corepressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators." *Embo J* **17**(17): 5129-40.

Valdez, A. C., J. P. Cabaniols, M. J. Brown and P. A. Roche (1999). "Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network." *J Cell Sci* **112** (**Pt 6**): 845-54.

Van Huffel, S., F. Delaei, K. Heyninck, D. De Valck and R. Beyaert (2001). "Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2." *J Biol Chem* **276**(32): 30216-23.

van Vlasselaer, P., H. Gascan, R. de Waal Malefyt and J. E. de Vries (1992). "IL-2 and a contact-mediated signal provided by TCR alpha beta + or TCR gamma delta + CD4+ T cells induce polyclonal Ig production by committed human B cells. Enhancement by IL-5, specific inhibition of IgA synthesis by IL-4." *J Immunol* **148**(6): 1674-84.

Verburg, M., I. B. Renes, D. J. Van Nispen, S. Ferdinandusse, M. Jorritsma, H. A. Buller, A. W. Einerhand and J. Dekker (2002). "Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration." *J Histochem Cytochem* **50**(11): 1525-36.

Viney, J. L. and T. T. MacDonald (1992). "Lymphokine secretion and proliferation of intraepithelial lymphocytes from murine small intestine." *Immunology* **77**(1): 19-24.

Virts, E., D. Barritt and W. C. Raschke (1998). "Expression of CD45 isoforms lacking exons 7, 8 and 10." *Mol Immunol* **35**(3): 167-76.

Wang, E., L. D. Miller, G. A. Ohnmacht, E. T. Liu and F. M. Marincola (2000). "High-fidelity mRNA amplification for gene profiling." *Nat Biotechnol* **18**(4): 457-9.

Wang, J., M. Whetsell and J. R. Klein (1997). "Local hormone networks and intestinal T cell homeostasis." *Science* **275**(5308): 1937-9.

Watanabe, N., M. Gavrieli, J. R. Sedy, J. Yang, F. Fallarino, S. K. Loftin, M. A. Hurchla, N. Zimmerman, J. Sim, X. Zang, T. L. Murphy, J. H. Russell, J. P. Allison and K. M. Murphy (2003). "BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1." *Nat Immunol* **4**(7): 670-9.

Watanabe, N., K. Ikuta, S. Fagarasan, S. Yazumi, T. Chiba and T. Honjo (2000). "Migration and differentiation of autoreactive B-1 cells induced by activated gamma/delta T cells in antierythrocyte immunoglobulin transgenic mice." *J Exp Med* **192**(11): 1577-86.

Waterhouse, P., J. M. Penninger, E. Timms, A. Wakeham, A. Shahinian, K. P. Lee, C. B. Thompson, H. Griesser and T. W. Mak (1995). "Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4." *Science* **270**(5238): 985-8.

Wen, L., S. J. Roberts, J. L. Viney, F. S. Wong, C. Mallick, R. C. Findly, Q. Peng, J. E. Craft, M. J. Owen and A. C. Hayday (1994). "Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in alpha beta(+) T cells." *Nature* **369**(6482): 654-8.

Wild, M. K., A. Cambiaggi, M. H. Brown, E. A. Davies, H. Ohno, T. Saito and P. A. van der Merwe (1999). "Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex." *J Exp Med* **190**(1): 31-41.

Wu, L. C., D. S. Tuot, D. S. Lyons, K. C. Garcia and M. M. Davis (2002). "Two-step binding mechanism for T-cell receptor recognition of peptide MHC." *Nature* 418(6897): 552-6.

Wulfing, C. and M. M. Davis (1998). "A receptor/cytoskeletal movement triggered by costimulation during T cell activation." *Science* **282**(5397): 2266-9.

Yokoyama, W. M., F. Koning, G. Stingl, J. A. Bluestone, J. E. Coligan and E. M. Shevach (1987). "Production of a T cell hybridoma that expresses the T cell receptor gamma/delta heterodimer." *J Exp Med* **165**(6): 1725-30.

Zachariasse, K. A., W. L. Vaz, C. Sotomayor and W. Kuhnle (1982). "Investigation of human erythrocyte ghost membranes with intramolecular excimer probes." *Biochim Biophys Acta* **688**(2): 323-32.

Zhang, F., W. G. Schmidt, Y. Hou, A. F. Williams and K. Jacobson (1992). "Spontaneous incorporation of the glycosyl-phosphatidylinositol-linked protein Thy-1 into cell membranes." *Proc Natl Acad Sci U S A* **89**(12): 5231-5.

Zhu, J., L. Guo, B. Min, C. J. Watson, J. Hu-Li, H. A. Young, P. N. Tsichlis and W. E. Paul (2002). "Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation." *Immunity* **16**(5): 733-44.

Zuany-Amorim, C., C. Ruffie, S. Haile, B. B. Vargaftig, P. Pereira and M. Pretolani (1998). "Requirement for gammadelta T cells in allergic airway inflammation." *Science* **280**(5367): 1265-7.